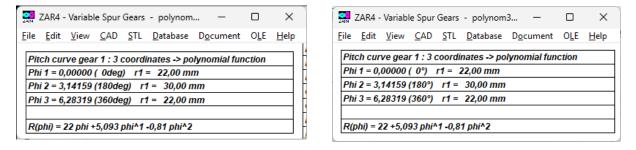
HEXAGON Newsletter 209

by Fritz Ruoss

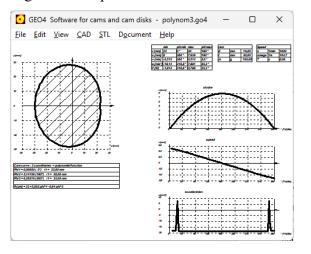
SR1/SR1+: Material database nut material

bolt-nut t	ype d thread jo	iint (TTJ)				n	ut		
 through-bolt joint w/ nut (TBJ) 						Hexagon nut			
⊖ TTJ + material	dw						16 - ISO 4032		
QUAL.10)						database		
рG	1040	MPa	E	210000	MPa		special nut		
Re	940	MPa	Rm	1040	MPa		outer diameter de / SW	24	mm
taub/Rm	0,62	\mathbf{K}	betaM	0,577			min. bearing surface nut dw	22,5	mm
Databa	se Materia	- V	_		_		height of nut	14,8	mm
3 (mat_	_nut.dbf)	~		database			Input nut material ?		

The material for the nut thread can be selected from the databases pressung.dbf, $mat_p_1.dbf$ and $mat_p_2.dbf$. A fourth database has now been added, $mat_nut.dbf$.


e <u>V</u> iew <u>H</u> elp						
		Search S	earch <u>N</u> ext	3 /12	ок	Cancel
MATERIAL	RP02	BM	PG	BETA_M	E_MODUL	ALPHA_
A1-50	210	500	500	0,7	210000	1,69
A2-70 s<=20	450	700	700	0,7	210000	1,69
A2-70 s>20	250	500	500	0,7	210000	1,69
A4-80 s<=24	600	800	800	0,7	210000	1,69
QUAL. 4	300	500	500	0,577	210000	1,19
QUAL. 5	380	580	580	0,577	210000	1,19
QUAL. 6	480	680	680	0,577	210000	1,19
QUAL. 8	640	850	850	0,577	210000	1,19
QUAL.04	250	380	380	0,577	210000	1,19
QUAL.05	300	500	500	0,577	210000	1,19
QUAL.10	940	1040	1040	0,577	210000	1,19
QUAL.12	1100	1150	1150	0,577	210000	1,1

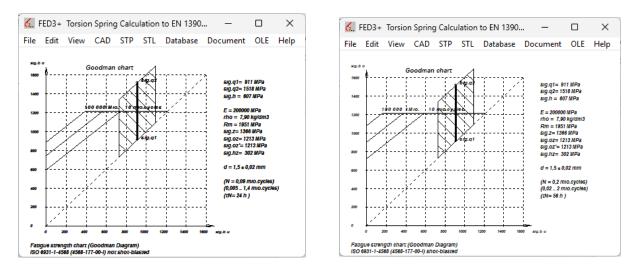
"Mat_nut.dbf" currently contains 12 records with material data for commercially available nuts if you want to calculate the thread strip safety for these. Grades 4 to 12 were taken from "pressung.dbf". Stainless steel data A1, A2 and A4 were taken from "mat_bolt.dbf". The data for A2-70 differs for screws for d<=20 and d>20. Assumption for nuts: Outside diameter of screw d corresponds to wrench size s of the nut. Please get in touch with me if you have more precise data on nut materials or if you would like to have added further materials to the nut database.


🔀 ZAR4 - Variable Spur Gears - polynom5.zr4 × File Edit View CAD STL Database Document OLE <u>H</u>elp transmission ratio i tot 0 749 1.404 Gear ratio i min/max pressure angle alpha 20.00 25 25 No. of teeth z Prtch curve gear 1 : 5 coordinates -> polynomial function normal module 2,073 m mm Phi 1 = 0,00000 (0°) r1 = 22,00 mm center distance a0 52,481 mm Phi 2 = 3,14159 (180°) r1 = 30,00 mm center distance 52,481 a def mm Phi 3 = 6,28319 (360°) r1 = 22,00 mm 20.00 20.00 Face width ь mm Phi 4 = 1,57080 (90°) r1 = 26,00 mm Extent pitch curve υ mm 162,787 162,787 Phi 5 = 4,71239 (270°) r1 = 26,00 mm Radius pitch curve 21,833 22,481 r min mm 30,000 30,647 Radius pitch curve mm r max R(phi) = 22 -1,698 phi^1 +4,593 phi^2 -1,376 phi^3 +0,110 phi^4 Radius pitch curve 25,908 25,908 r nom mm P kW 1,000 nominal power Nominal torque Т Nm 6.4 f (phi) 1500 Revolutions 1/mir f (phi) n Safety factor tooth b a∰emin 18,52 19,17 At phi1 = ? phi1 SF 4 4 Safety factor pitting SHmin 3,08 3,21 At phi1 = ? phi1 SH 1 1

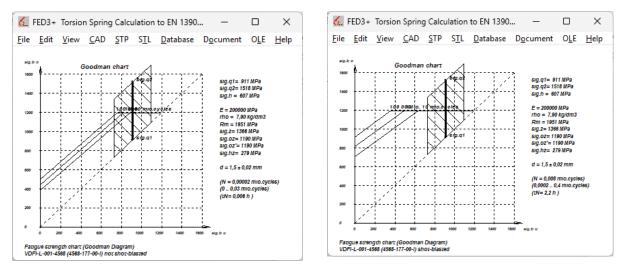
ZAR4: Calculate polynomial function from points of the pitch curve

In ZAR4, you can enter three to a maximum of fifty positions of the partial curve under "Pitch curve \rightarrow Spline, polynomial function", and ZAR4 calculates the polynomial function for the radius positions of the non-circular gear from this. Important: Enter the same position for phi=0° and 360°, otherwise there will be a jump. Unfortunately, the unit of the first term of the polynomial function was not displayed correctly in the Quick3 view; instead of phi, it should of course be phi^0, and phi^0 is 1. The formula has been corrected.

The same function also exists in GEO4. There, a cam is generated from the polynomial function instead of a non-circular gear. The representation of the formula is correct there.


Tips and tricks for spring calculation: Adjusting Goodman diagrams

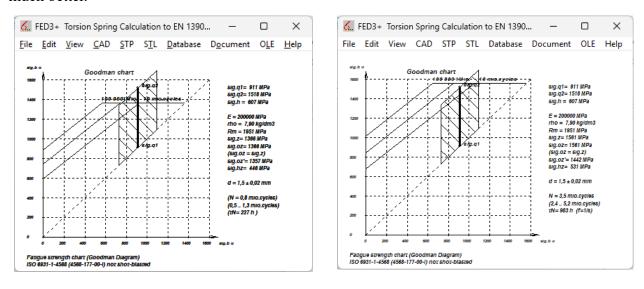
If the spring is not fatigue-resistant or the service life is too short, there are several ways to change the Goodman diagram (without changing the material database):


1. Shot blasting increases the permissible lifting stress

- 2. Calculation method "tauoz=tauz" or "sigmaoz=sigmaz" may increase the max.permissible stress
- 3. (torsion spring only): Factor Sigma/Rm =0.7 can be changed.

Example: A customer has received a Goodman diagram for a torsion spring from his material supplier for 1.4568 in which the upper horizontal line is higher than calculated with FED3+ and asks how this can be. The Goodman diagrams in the FED programs are in accordance with EN 13906. However, there are ways to change them.

Shot peening is of no use here. Shot peening improves the permissible lifting stress, but not the permissible maximum stress. For some time now, there have been new material data from the German spring manufacturers association, which should eventually replace the old Goodman diagrams from EN 13906-1. But the permissible stresses for 1.4568 are actually even lower here (pictures below).


However, the FED software now offers the option of setting the horizontal line with the upper stress as the permissible shear stress (FED1..7) or bending stress (FED3).

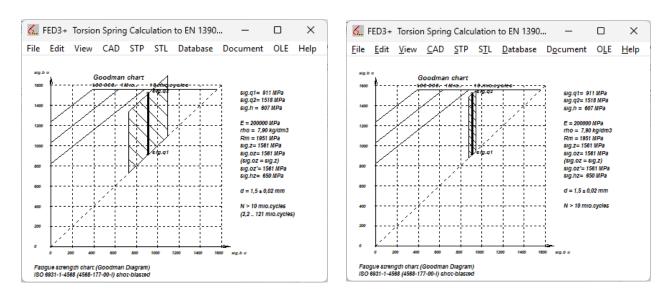
The upper horizontal line applies to lifting stress 0, means purely static load. Accordingly, this limit line should actually be identical to the permissible shear stress tauz or bending stress Sigmaz. However, in the Goodman diagrams from EN 13906-1, the horizontal line from the Goodman diagrams is usually lower than the permissible shear stress to EN/ISO.

In FED you can configure tauz instead of tauo or sigmaz instead of sigmao for the horizontal line under Edit\Calculation Settings. In this

example, sigmaoz increases from 1213 MPa to 1366 MPa. Now the fatigue strength looks^{2E6 load cycles} much better.

In FED3+ you can also change the conversion factor for max. bending stress spring = 70% tensile strength.

Sigma b / Rm = -0.7


<

Sigma b / tau = 1,25

According to EN 13906-3, the

bending stress of torsion springs is

calculated with sigmab = 0.7 Rm. But in general mechanical engineering, sigmab = 1.0 Rm is used. Then the permissible bending stress sigmaz is much higher. But be careful: the calculation is then no longer according to EN 13906-3. If you increase Sigmab/Rm from 0.7 to 0.8, sigmaq2 is below sigmao. Now only the lifting stress is a little too high (picture top right). No problem, thanks to shot blasting almost all values are in the green range (picture bottom left).

The permissible maximum stress is only exceeded at the upper tolerance limit. The solution is to reduce the tolerances for torque T1 and T2 (right picture).

This is how you can use tricks to change the fatigue strength and service life of a spring. The result is not in accordance with EN 13906, which is also displayed as a warning in FED3+. The spring should be verified using fatigue strength tests before use.

WN2,4,5,10: CAD configuration under "CAD\Tooth form"

Previously, you had to set the number of points for involute and root fillet under "CAD\Tooth form\ Config", now you can do this directly under "CAD\Tooth form shaft/hub". Unfortunately, at the time, we forgot to remove the idle "Config" selection, but this has now been done.

please choose	WN2+ CAD shaft X
drawing shaft drawing Nabe drawing shaft+Nabe basic rack (shaft) basic rack (Nabe) tooth contact Contin return	 ✓ involute curve as Polyline ? ☐ draw diameters ? ✓ draw bore ?
	✓ draw tooth root curve ?
OK Cancel Help Text Aux. Image	fillet resolution 100 😴 <
sct X	number of points for involute polycurve 20 🗲 <
tt × lease choose drawing shaft drawing hub drawing shaft+hub	number of points for involute polycurve 20 🔹 < gen.addend.modif.coef. xe 0,436865 < < min

FAQ: Save individual start data

Question: When we start a calculation via "File" > "New", there are already parameters by default that have to be overwritten each time. Can you please tell us where these "default parameters" are saved and how we can adjust them when we want to start a new calculation? **Answer:** Save your default parameters with the file name "NULL". This zero file is loaded automatically at startup.

February 23, 2025: Germany has voted

The unpopular "traffic lights" coalition was voted out. Hopefully the future Chancellor Friedrich Merz can quickly push through his plans in parliament.

February 24, 2025: 3 years of war in Ukraine

Hopefully my prediction from February 2024 in Info Letter 203 will come true that Trump and Putin will decide to end the war in Ukraine. Then European politicians should also be happy about peace and not reject it because they are not allowed to sit at the kids' table during the peace negotiations.

HEXAGON PRICE LIST 2025-03-01

Base price for single licences (perpetual)	EUR
DI1 Version 2.2 O-Ring Seal Software	
DXF-Manager Version 9.1	383
DXFPLOT V 3.2	123
FED1+ V32.1 Helical Compression Springs incl. spring database, animation, relax., 3D,	695
FED2+ V22.6 Helical Extension Springs incl. Spring database, animation, relaxation,	675
FED3+ V22.1 Helical Torsion Springs incl. prod.drawing, animation, 3D, rectang.wire,	600
FED4 Version 8.0 Disk Springs	430
FED5 Version 17.6 Conical Compression Springs	741
FED6 Version 18.6 Nonlinear Cylindrical Compression Springs	634
FED7 Version 15.6 Nonlinear Compression Springs	660
FED8 Version 7.6 Torsion Bar	317
FED9+ Version 7.0 Spiral Spring incl. production drawing, animation, Quick input	490
FED10 Version 4.5 Leaf Spring	500
FED10 Version 3.6 Spring Lock and Bushing	210
FED12 Version 2.7 Elastomer Compression Spring	210
FED13 Version 4.3 Wave Spring Washers	220
FED14 Version 2.9 Helical Wave Spring	395
FED15 Version 1.7 Leaf Spring (simple)	180
FED16 Version 1.4 Constant Force Spring	225
FED17 Version 2.6 Magazine Spring	725
FED19 Version 1.0 Buffer Spring	620
GEO1+ V7.5 Cross Section Calculation incl. profile database	294
GEO2 V3.4 Rotation Bodies	194
GEO2 V3.4 Notation Bodies GEO3 V4.1 Hertzian Pressure	205
GEO4 V5.3 Cam Software	205
GEO5 V1.0 Geneva Drive Mechanism Software	203
GEO6 V1.0 Pinch Roll Overrunning Clutch Software	232
GEO7 V1.0 Internal Geneva Drive Mechanism Software	232
GR1 V2.2 Gear Construction Kit Software	185
GR2 V1.4 Eccentric Gear Software	550,-
GR3 V1.3 Cycloidal Gear Software	600,-
HPGL Manager Version 9.1	383
LG1 V7.0 Roll-Contact Bearings	296
LG2 V3.1 Hydrodynamic Plain Journal Bearings	460
SR1 V25.4 Bolted Joint Design	640
SR1+ V25.4 Bolted Joint Design incl. Flange calculation	750
TOL1 V12.0 Tolerance Analysis	506
TOL2 Version 4.1 Tolerance Analysis	495
TOLPASS V4.1 Library for ISO tolerances	107
TR1 V6.5 Girder Calculation	757
WL1+ V21.9 Shaft Calculation incl. Roll-contact Bearings	945
WN1 V12.4 Cylindrical and Conical Press Fits	485
WN2 V11.6 Involute Splines to DIN 5480	250
WN2+ V11.6 Involute Splines to DIN 5480 and non-standard involute splines	380
WN3 V 6.0 Parallel Key Joints to DIN 6885, ANSI B17.1, DIN 6892	245
WN4 V 6.2 Involute Splines to ANSI B 92.1	276
WN5 V 6.2 Involute Splines to ISO 4156 and ANSI B 92.2 M	255
WN6 V 4.1 Polygon Profiles P3G to DIN 32711	180
WN7 V 4.1 Polygon Profiles P4C to DIN 32712	175
WN8 V 2.6 Serration to DIN 5481	195
WN9 V 2.4 Spline Shafts to DIN ISO 14	170
WN10 V 4.5 Involute Splines to DIN 5482	260
WN11 V 2.0 Woodruff Key Joints	240
WN12 V 1.2 Face Splines	240
WN12 V 1.2 Face Spinles WN13 V 1.0 Polygon Profiles PnG	230
WN13 V 1.0 Polygon Profiles PhG	236
WNXE V 2.4 Involute Splines – dimensions, graphic, measure	375
WNXE V 2.4 Involute Splines – dimensions, graphic, measure	230
WNXK V 2.2 Servation Spinles – dimensions, graphic, measure	230
	200

ZAR1+ V 27.1 Spur and Helical Gears	1115
ZAR2 V8.2 Spiral Bevel Gears to Klingelnberg	792
ZAR3+ V10.6 Cylindrical Worm Gears	620
ZAR4 V6.5 Non-circular Spur Gears	1610
ZAR5 V12.8 Planetary Gears	1355
ZAR6 V4.3 Straight/Helical/Spiral Bevel Gears	585
ZAR7 V2.7 Plus Planetary Gears	1380
ZAR8 V2.3 Ravigneaux Planetary Gears	1950
ZAR9 V1.1 Cross-Helical Screw Gears	650
ZARXP V2.6 Involute Profiles - dimensions, graphic, measure	275
ZAR1W V2.7 Gear Wheel Dimensions, tolerances, measure	450
ZM1.V3.1 Chain Gear Design	326
ZM2.V1.1 Pin Rack Drive Design	320
ZM3.V1.1 Synchronous Belt Drive Design	224

PACKAGES	EUR
HEXAGON Mechanical Engineering Package (TOL1, ZAR1+, ZAR2, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WN2+, WN3, WST1, SR1+, FED1+, FED2+, FED3+, FED4, ZARXP, TOLPASS, LG1, DXFPLOT, GEO1+, TOL2, GEO2, GEO3, ZM1, ZM3, WN6, WN7, LG2, FED12, FED13, WN8, WN9, WN11, DI1, FED15, GR1)	8,500
HEXAGON Mechanical Engineering Base Package (ZAR1+, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WST1, SR1+, FED1,+, FED2+, FED3+)	4,900
HEXAGON Spur Gear Package (ZAR1+ and ZAR5)	1,585
HEXAGON Planetary Gear Package (ZAR1+, ZAR5, ZAR7, ZAR8, GR1)	3,600
HEXAGON Involute Spline Package (WN2+, WN4, WN5, WN10, WNXE)	1,200
HEXAGON Graphic Package (DXF-Manager, HPGL-Manager, DXFPLOT)	741
HEXAGON Helical Spring Package (FED1+, FED2+, FED3+, FED5, FED6, FED7)	2,550
HEXAGON Complete Spring Package (FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED8, FED9+, FED10, FED11, FED12, FED13, FED14,, FED15, FED16, FED17, FED19)	4,985
HEXAGON Tolerance Package (TOL1, TOL1CON, TOL2, TOLPASS)	945
HEXAGON Complete Package (All Programs)	14,950

Quantity Discount for Individual Licenses

Licenses	2	3	4	5	6	7	8	9	>9
Discount %	25%	27.5%	30%	32.5%	35%	37.5%	40%	42.5%	45%

Network Floating License

Licenses	1	2	3	4	5	6	78	911	>11
Discount/Add.cost	-50%	-20%	0%	10%	15%	20%	25%	30%	35%
(Negetive Discount means additional cast)									

(Negative Discount means additional cost)

Language Version:

- German and English : all Programs

- French: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9+, FED10, FED13, FED14, FED15, TOL1, TOL2.

- Italiano: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9+, FED13, FED14, FED17.

- Swedish: FED1+, FED2+, FED3+, FED5, FED6, FED7.

- Portugues: FED1+, FED17

- Spanish: FED1+, FED2+, FED3+, FED17

Updates:

Software Update Windows: 40 EUR, Update Win64: 50 EUR

Update Mechanical Engineering Package: 800 EUR, Update Complete Package: 1200 EUR Maintenance contract for free updates: annual fee: 150 EUR + 40 EUR per program

Hexagon Software Network Licenses

Floating License in the time-sharing manner by integrated license manager.

Conditions for delivery and payment

Delivery by Email or download (zip file, manual as pdf files): EUR 0.

General packaging and postage costs for delivery on CD: EUR 60, (EUR 25 inside Europe)

Conditions of payment: bank transfer in advance with 2% discount, or PayPal (paypal.me/hexagoninfo) net. After installation, software has to be released by key code. Key codes will be sent after receipt of payment. Fee for additional key codes: 40 EUR