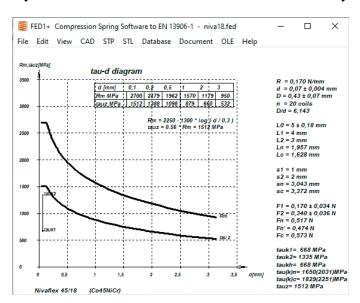
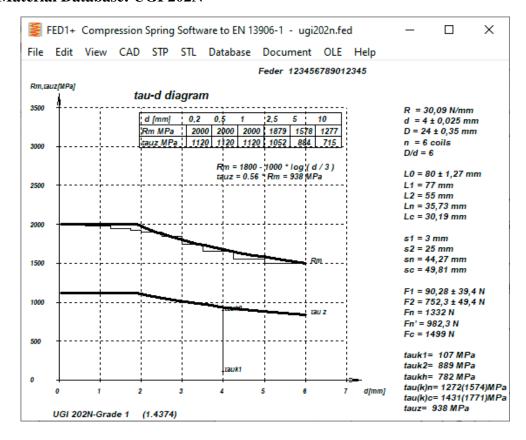
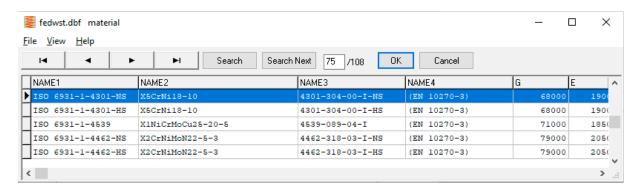

by Fritz Ruoss


FED Material Database: SWOSC-V and SWOSC-VHV

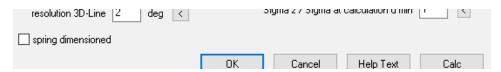

The oil tempered spring steel wires SWOSC-V according to the Japanese JIS standard and SWOSC-VHV are comparable with VD-SiCr and VD-SiCrV according to EN 10270-2. The two materials were added to fedwst.dbf, the technical data was taken from Suzuki-Garphyttan and is similar to Oteva70 and Oteva75.

FED Material Database: Nivaflex 45/18

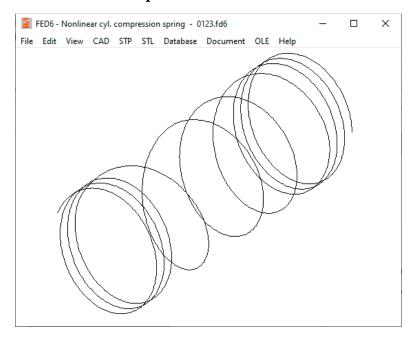
Nivaflex 45/18 is a "watchmaker's wire" made of 45% cobalt, 21% nickel, 18% chromium, 5% iron, 4% tungsten, 4% molybdenum and 1% titanium, preferably for micro springs between 0.2 and 0.5 mm in diameter. Fatigue strength values are not available, tensile strength values hardened, 2h 550°C. There was already a similar material in the material database, Nivaflex 45/5, with slightly higher strength and fatigue strength data. The only difference to Nivaflex 45/18 in the chemical composition is that Nivaflex 45/5 in addition to 45% cobalt, 21% nickel, 18% chromium, 5% iron, 4% tungsten, 4% molybdenum and 1% titanium still contains 0.2% beryllium.


FED Material Database: UGI 202N

UGI 202N is an austenitic stainless, non-magnetic steel with a high manganese content (X8CrMnNiN18-9-5) and has been added to the materials database. Fatigue strength values are not available.

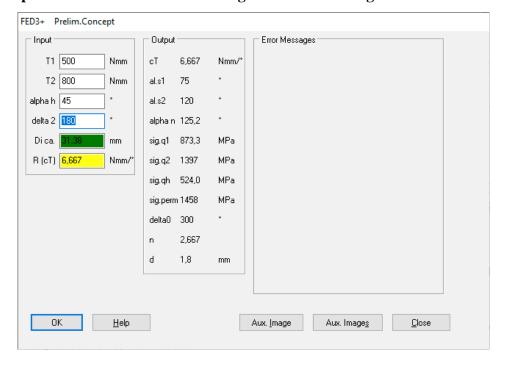

FED Material Database: EN 10270-3 is ISO 6931-1

EN 10270-3 was withdrawn years ago and replaced by ISO 6931-1 (see Info Letter 184). If you don't know that, you will search in vain for stainless spring steels according to EN 10270-3 in the spring database. Therefore, "(EN10270-3)" is now listed under NAME4.



FED3+: Spring drawing without Dimensions

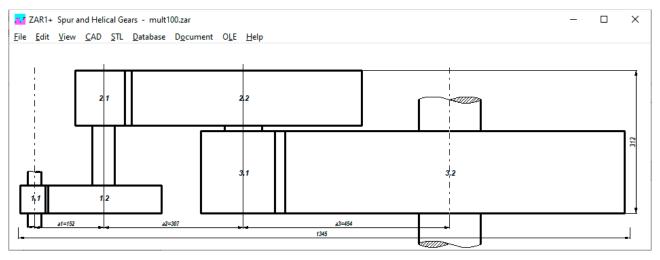
The leg length of bent legs is not clearly defined, neither in the FED3+ drawing nor in EN 13906-3. For this reason, the torsion springs are now displayed without dimensions. Only if you change the setting under "Edit\Calculation method" will the legs be drawn with dimensions as before.



FED6, FED7: 3D Helix for STEP Export

Just like in FED1+, FED3+, FED5, FED17, you can now also export the center line of the spring as a 3D helix in STP format in FED6 and FED7 and transfer it to CAD. To represent a 3D spring, you can then extrude the wire around the helix in the CAD program and cut off the spring ends (in the case of ground spring ends).

FED3+: Improvements in Pre-Dimensioning and Dimensioning



In the pre-design or in the design basic data or in the design quick input, the entered spring angle delta2 was changed for the calculation method R = 1/(1/R0+1/RS1+1/RS2) and for supported springs with bent legs and a large lever arm. Now only the coil diameter is adjusted when changing the input data.

FED14: Application static/dynamic saved

Input of application static/dynamic saved and loaded in f14 file.

ZAR1+: Dimensioning of Multi-Stage Gears

When pre-designing multi-stage gears, the most important dimensions have been added to the drawing: center distances between the stages, overall length, overall width.

ZAR5, ZAR7, ZAR8: Load Spectrum: Material and Heat Treatment separated to Gear Pairs

select material and heat tre	_		×							
le <u>V</u> iew <u>H</u> elp										
I■ ■ ► ► I Search Next 2 /4 OK Cancel										
MATERIAL	N0_F	NN_F	P_F	N0_H	NN_H	P_H	П			
Through hardened	10000	3000000	6,2	100000	50000000	6,6				
Nitrided	1000	3000000	17	100000	2000000	5,7				
Nitro-carburized	1000	3000000	84	100000	2000000	15,7				
Case carburized	1000	3000000	8,7	100000	50000000	6,6				

So far, the selection of the material type for load collectives in planetary gears applied to both the sun-planet gear pair and the planet-ring gear pair. Now you can choose different fatigue parameters for pairing S-P and P-H. There are different values for the application factors KAH and KAF calculated from the load spectrum because the number of load cycles is included in the calculation. So there are now 4 different application factors in ZAR5: KAF-SP, KAH-SP, KAF-PH, KAH-PH. In ZAR7 for plus planetary gears there are 6 and in ZAR8 for Ravigneuax gears there are even 8 different application factors (for 4 gear pairs Si-Pi, Pi-Pe, Pe-H, Pe-Se).

ZAR1+,ZAR3+,ZAR5,ZAR7,ZAR8,ZAR9: 3D Printing of Helical Gear Wheels and Worms

Spur gears can be made quite easily with the 3D printer from the STL files from the ZAR program. It doesn't look so nice with helical gears and worms, the sloping plane is stepped. Step height is the layer thickness in 3D printing. The layer thickness can be changed under "File\Settings\CAD" (z slice). Default is 0.1mm, reduce this to the minimum possible layer height setting of your 3D printer to get a more smooth tooth surface.

HEXAGON PRICE LIST 2023-05-01

HEXAGON PRICE LIST 2023-05-01	EUD
Base price for single licences (perpetual)	EUR
DI1 Version 2.2 O-Ring Seal Software	190
DXF-Manager Version 9.1	383
DXFPLOT V 3.2	123
FED1+ V31.7 Helical Compression Springs incl. spring database, animation, relax., 3D,	695
FED2+ V22.3 Helical Extension Springs incl. Spring database, animation, relaxation,	675
FED3+ V21.9 Helical Torsion Springs incl. prod.drawing, animation, 3D, rectang.wire,	600 430
FED4 Version 8.0 Disk Springs FED5 Version 17.3 Conical Compression Springs	741
FED6 Version 18.4 Nonlinear Cylindrical Compression Springs	634
FED7 Version 15.4 Nonlinear Compression Springs	660
FED8 Version 7.5 Torsion Bar	317
FED9+ Version 7.0 Spiral Spring incl. production drawing, animation, Quick input	490
FED10 Version 4.5 Leaf Spring	500
FED11 Version 3.6 Spring Lock and Bushing	210
FED12 Version 2.7 Elastomer Compression Spring	220
FED13 Version 4.3 Wave Spring Washers	228
FED14 Version 2.8 Helical Wave Spring	395
FED15 Version 1.7 Leaf Spring (simple)	180
FED16 Version 1.4 Constant Force Spring	225
FED17 Version 2.3 Magazine Spring	725
FED19 Version 1.0 Buffer Spring	620
GEO1+ V7.5 Cross Section Calculation incl. profile database	294
GEO2 V3.3 Rotation Bodies	194
GEO3 V4.0 Hertzian Pressure	205
GEO4 V5.3 Cam Software	265
GEO5 V1.0 Geneva Drive Mechanism Software	218
GEO6 V1.0 Pinch Roll Overrunning Clutch Software	232
GEO7 V1.0 Internal Geneva Drive Mechanism Software	219
GR1 V2.2 Gear construction kit software	185
GR2 V1.2 Eccentric Gear software	550,-
HPGL Manager Version 9.1	383
LG1 V7.0 Roll-Contact Bearings	296
LG2 V3.1 Hydrodynamic Plain Journal Bearings	460
SR1 V24.8 Bolted Joint Design	640
SR1+ V24.8 Bolted Joint Design incl. Flange calculation	750
TOL1 V12.0 Tolerance Analysis	506
TOL2 Version 4.1 Tolerance Analysis	495
TOLPASS V4.1 Library for ISO tolerances	107
TR1 V6.5 Girder Calculation	757
WL1+ V21.9 Shaft Calculation incl. Roll-contact Bearings	945
WN1 V12.4 Cylindrical and Conical Press Fits	485
WN2 V11.4 Involute Splines to DIN 5480	250
WN2+ V11.4 Involute Splines to DIN 5480 and non-standard involute splines	380
WN3 V 6.0 Parallel Key Joints to DIN 6885, ANSI B17.1, DIN 6892	245
WN4 V 6.1 Involute Splines to ANSI B 92.1	276
WN5 V 6.1 Involute Splines to ISO 4156 and ANSI B 92.2 M	255
WN6 V 4.1 Polygon Profiles P3G to DIN 32711	180
WN7 V 4.1 Polygon Profiles P4C to DIN 32712	175
WN8 V 2.6 Serration to DIN 5481	195
WN9 V 2.4 Spline Shafts to DIN ISO 14	170
WN10 V 4.4 Involute Splines to DIN 5482	260
WN11 V 2.0 Woodruff Key Joints	240
WN12 V 1.2 Face Splines	256
WN13 V 1.0 Polygon Profiles PnG	238
WN14 V 1.0 Polygon Profiles PnC	236
WNXE V 2.3 Involute Splines – dimensions, graphic, measure	375
WNXK V 2.2 Serration Splines – dimensions, graphic, measure	230
WST1 V 10.2 Material Database	235
ZAR1+ V 27.0 Spur and Helical Gears	1115

ZAR2 V8.2 Spiral Bevel Gears to Klingelnberg	792
ZAR3+ V10.5 Cylindrical Worm Gears	620
ZAR4 V6.4 Non-circular Spur Gears	1610
ZAR5 V12.7 Planetary Gears	1355
ZAR6 V4.3 Straight/Helical/Spiral Bevel Gears	585
ZAR7 V2.6 Plus Planetary Gears	1380
ZAR8 V2.2 Ravigneaux Planetary Gears	1950
ZAR9 V1.0 Cross-Helical Screw Gears	650
ZARXP V2.6 Involute Profiles - dimensions, graphic, measure	275
ZAR1W V2.7 Gear Wheel Dimensions, tolerances, measure	450
ZM1.V3.0 Chain Gear Design	326
ZM2.V1.0 Pin Rack Drive Design	320
ZM3.V1.1 Synchronous Belt Drive Design	224

PACKAGES	EUR				
HEXAGON Mechanical Engineering Package (TOL1, ZAR1+, ZAR2, ZAR3+, ZAR5, ZAR6, WL1+, WN1,					
WN2+, WN3, WST1, SR1+, FED1+, FED2+, FED3+, FED4, ZARXP, TOLPASS, LG1, DXFPLOT, GEO1+,	8,500				
TOL2, GEO2, GEO3, ZM1, ZM3, WN6, WN7, LG2, FED12, FED13, WN8, WN9, WN11, DI1, FED15, GR1)					
HEXAGON Mechanical Engineering Base Package (ZAR1+, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WST1,					
SR1+, FED1,+, FED2+, FED3+)	4,900				
HEXAGON Spur Gear Package (ZAR1+ and ZAR5)	1,585				
HEXAGON Planetary Gear Package (ZAR1+, ZAR5, ZAR7, ZAR8, GR1)	3,600				
HEXAGON Involute Spline Package (WN2+, WN4, WN5, WN10, WNXE)					
HEXAGON Graphic Package (DXF-Manager, HPGL-Manager, DXFPLOT)					
HEXAGON Helical Spring Package (FED1+, FED2+, FED3+, FED5, FED6, FED7)	2,550				
HEXAGON Complete Spring Package (FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED8,	4,985				
FED9+, FED10, FED11, FED12, FED13, FED14,, FED15, FED16, FED17, FED19)					
HEXAGON Tolerance Package (TOL1, TOL1CON, TOL2, TOLPASS)					
HEXAGON Complete Package (All Programs)	14,950				

Quantity Discount for Individual Licenses

Licenses	2	3	4	5	6	7	8	9	>9
Discount %	25%	27.5%	30%	32.5%	35%	37.5%	40%	42.5%	45%

Network Floating License

Licenses	1	2	3	4	5	6	78	911	>11
Discount/Add.cost	-50%	-20%	0%	10%	15%	20%	25%	30%	35%

(Negative Discount means additional cost)

Language Version:

- German and English: all Programs
- French: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9+, FED10, FED13, FED14, FED15, TOL1, TOL2.
- Italiano: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9+, FED13, FED14, FED17.
- Swedish: FED1+, FED2+, FED3+, FED5, FED6, FED7.
- Portugues: FED1+, FED17
- Spanish: FED1+, FED2+, FED3+, FED17

Updates:

Software Update Windows: 40 EUR, Update Win64: 50 EUR

Update Mechanical Engineering Package: 800 EUR, Update Complete Package: 1200 EUR **Maintenance contract** for free updates: annual fee: 150 EUR + 40 EUR per program

Hexagon Software Network Licenses

Floating License in the time-sharing manner by integrated license manager.

Conditions for delivery and payment

Delivery by Email or download (zip file, manual as pdf files): EUR 0.

General packaging and postage costs for delivery on CD-ROM: EUR 60, (EUR 25 inside Europe)

Conditions of payment: bank transfer in advance with 2% discount, or PayPal (paypal.me/hexagoninfo) net. After installation, software has to be released by key code. Key codes will be sent after receipt of payment. Fee for additional key codes: 40 EUR

E-Mail: info@hexagon.de

Web: www.hexagon.de