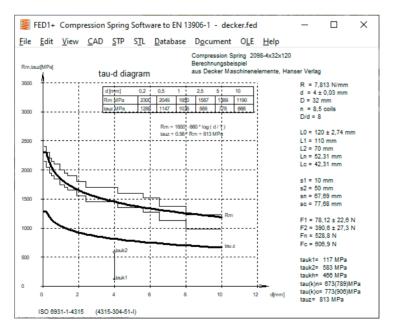
HEXAGON Newsletter 184

by Fritz Ruoss

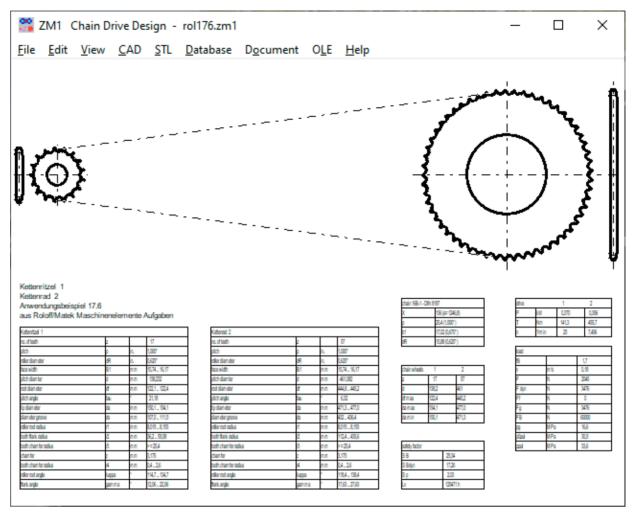
FED1+, 2+, 3+, 5,6,7,8,9,10,11,17: New standard ISO 6931-1 replaces EN 10270-3

The EN 10270-3: 2012 standard has been withdrawn and replaced by ISO 6931-1. There are new material numbers: 1.4310 has become 4310-301-00-I, for example. Apparently the new number contains the earlier material numbers from EN, AISI, ASTM. The most important message: apart from the name, not much has changed, the strength values remain the same. 1.4325 (4325-302-00-E) and 1.4315 (4315-304-51-I) were added. There is a common table for the tensile strength of 1.4325 and 1.4315, the values are similar to 1.4301.

edwst.dbf material le <u>V</u> iew <u>H</u> elp				_	
H -	► ► Search	Search Next 18 /104 0	K Cancel		
NAME1	NAME2	NAME3	NAME4	G	E
ISO 6931-1-4310-NS	X10CrNi18-8	4310-301-00-I-NS	annealed	73000	190000
ISO 6931-1-4315	X5CrNiN19-9	4315-304-51-I	annealed	68000	180000
ISO 6931-1-4325	X9CrNil8-9	4325-302-00-E	annealed	73000	185000
ISO 6931-1-4401	X5CrNiMo17-12-2	4401-316-00-I	annealed	71000	185000
ISO 6931-1-4462-HS	X2CrNiMoN22-5-3	4462-318-03-I-HS	heat treated	79000	205000
ISO 6931-1-4462-NS	X2CrNiMoN22-5-3	4462-318-03-I-NS	heat treated	79000	205000
ISO 6931-1-4539	X1NiCrMoCu25-20-5	4539-089-04-I	heat treated	71000	185000
ISO 6931-1-4568	X7CrNiAll7-7	4568-177-00-I	age-hardened	78000	200000
					>


Modifications fedwst.dbf:

NAME1: EN10270-3 changed into ISO 6931-1


NAME1: Sandvik materials: designation EN10270-3 omitted, replaced by Sandvik designation NAME2: chemical composition, no changes

NAME3: Material name according to ISO 6931 (4310-301-00-I)

Material 4325-302-00-E (X9CrNi18-9) and 4315-304-51-I (X5CrNiN19-9) are added.

If you open an old calculation file with the new version, the material name e.g. "ISO 6931-1-4310-HS" is displayed instead of "EN 10270-3-4310-HS". Otherwise nothing changes, all material parameters remain the same.

ZM1: Chain Drive Calculation according to ISO 606

There were extensive changes to the ZM1 software for calculating roller chains and sprockets. The ZM1 software for chain drives has been adapted to ISO 606: 2018. ISO 606 replaces the old DIN standards 8186, 8187, 8196. The chain sizes are partly identical to DIN 8187/8188, partly they differ. Some chain sizes from DIN have been adopted under different names in ISO 606. Example: "08A" becomes "40" and "085" becomes "41". There is now a new database ISO606.DBF with chain dimensions according to ISO 606. This contains 100 data records, including the reinforced version "H" and the extra reinforced version "HE". The old database with DIN chains is also available so that old calculation files can still be opened without errors. When selecting the chain size, both the old and the new database are available. To convert old calculations to the new ISO designations, open the calculation file, then simply select the appropriate chain size from the ISO606 database under Edit \ Dimensions, compare the calculation results, save the file.

ISO 606 Corrections

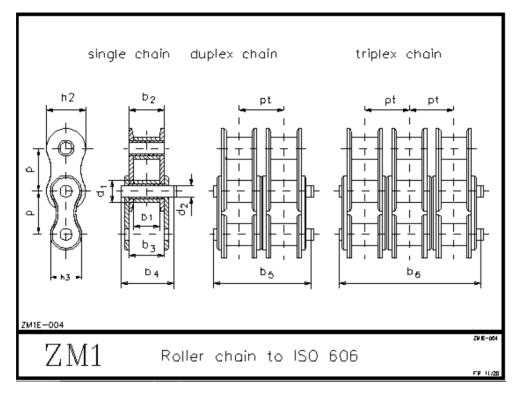
If you use ISO 606: 2018-02, you should correct a few small errors: 5.4.2.2 and 5.4.2.3 have the correction as a footnote, but you have to change the incorrect designation re min / max yourself.

5.5.2: da, min = d + p (1 + 1.6 / z) –d1 instead of da, min = d + p (1 - 1.6 / z) - d1 further under 5.5.2: Designation "ha, max" and "ha, min" instead of "da, max" and "da, min".

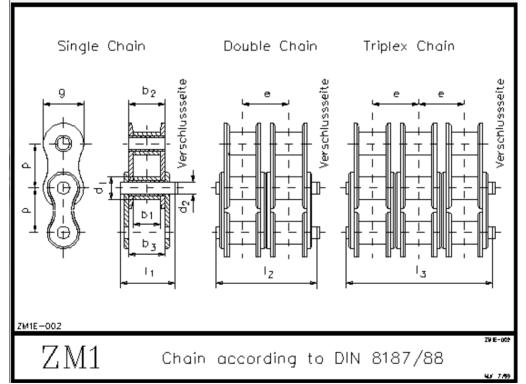
ZM1: Database differences ISO 606 and DIN 8187/8188

0	roller	chains acc.to D	IN 8187/8188/	8181/8154/816	4						_		×
<u>F</u> il	le <u>V</u> iev	v <u>H</u> elp											
	Image: Marking the second se												
	NB	P	B1	DR	E	G	L1	FB1	A1	Q1	L2	FB2	
	16B	25,4	17,02	15,88	31,88	21,08	36,1	60	2,1	2,7	68	106	5
	16A	25,4	15,75	15,88	29,29	24,1	33,5	56,7	1,78	2,6	62,7	113,4	4
	20B	31,75	19,56	19,05	36,45	26,42	43,2	95	2,96	3,6	79,7	170	£
	20A	31,75	18,9	19,05	35,76	30,1	41,1	88,5	2,61	3,7	77	177	1
	24B	38,1	25,4	25,4	48,36	33,4	53,4	160	5,54	6,7	101	280)
	24A	38,1	25,22	22,23	45,44	36,2	50,8	127	3,92	5,5	96,3	254	1
<												2	>

The database fields of the two databases are different because the tables on which they are based are also different. In the old DIN database there are fields A1, A2, A3 for pressure area AG for 1-fold, 2-fold, 3-fold chains. The surface pressure is calculated from this p = F / AG.

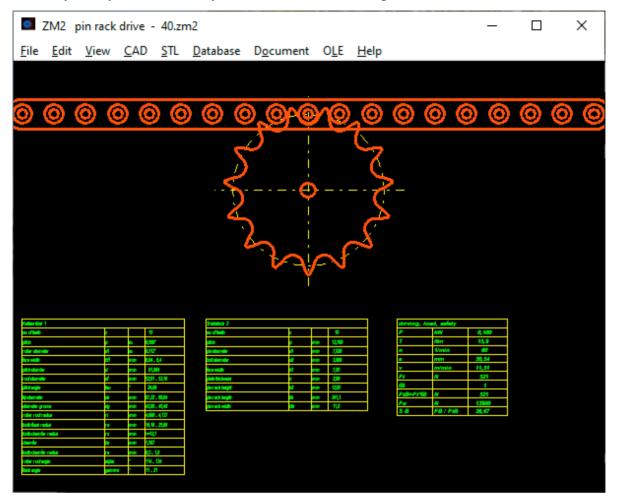

0	🖁 rollei	r chains acc	.to ISO 606								-		\times
Ei	le <u>V</u> ie	w <u>H</u> elp											
	Image:												
	NB	INFO	P	D1	B1	D2	H2	PT	B3	B4	B5	B6	F
▶	16B		25,4	15,88	17,02	8,28	21,08	31,88	25,58	36,1	68	99,9	-
	80H		25,4	15,88	15,75	7,94	24,13	32,59	24,33	37,4	70	102,6	1
	SOHE		25,4	15,88	15,75	7,94	24,13	32,59	24,33	37,4	70	102,6	1
	100	20A	31,75	19,05	18,9	9,54	30,17	35,76	27,51	41,1	77	113	
	20B		31,75	19,05	19,56	10,19	26,42	36,45	29,14	43,2	79,7	116,1	
	100H		31,75	19,05	18,9	9,54	30,17	39,09	29,16	44,5	83,6	122,7	
<													>

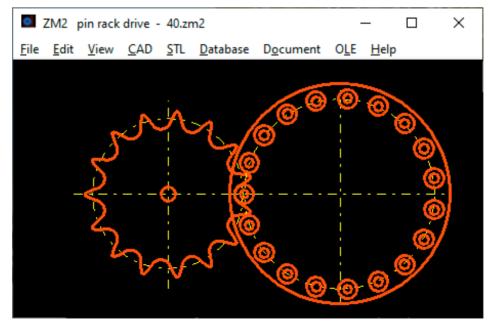
In the ISO database there are fields D2 with the bolt diameter d2 and B3 with the width between outer plates b3. From this, ZM1 calculates the pressure area AG = b3 * d2 * n.

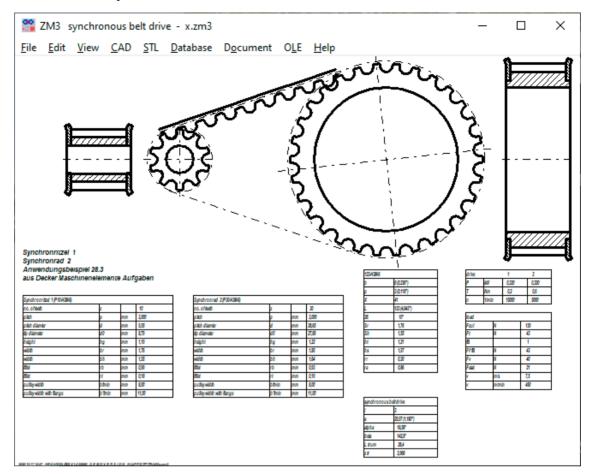

🞇 ZM1 geometry	- 🗆 X
	7
 DIN 8187 / 8188 ISO 606 	data base chain> 16B
no. of teeth z1 17	type ● single ● double
no. of teeth z2 57	
center distance a ca. 1250	mm <
borehole diameter dB1 61	mm <
borehole diameter dB2 223	mm <
OK Cancel	? mm <> inch Calc

ZM1: Designation differences ISO 606 and DIN

The abbreviations according to ISO 606 differ from the previous designations according to DIN. For this purpose, new help pictures of the chain and sprocket have been created.


The abbreviations in the ZM1 printout and quick view were not generally changed to the ISO denominations: Depending on whether you have selected a chain from the DIN database or the ISO


database, the printed abbreviations are according to DIN or ISO. So you can get used to the new names or keep the old ones. Example: The roll diameter is now "d1" instead of "dR". Confusing: the pitch circle diameter of gear 1 is also "d1". And "dR" is now the test pin diameter for measuring the root diameter with test dimension dM. And "Fu" is not the circumferential force, but the minimum breaking force of the chain.


ZM2: Software for Pin Rack Drive

Soon there will be a new program for the calculation of pin rack drives. A sprocket is used as the drive wheel, similar to ZM1. In the past, pin rack drive was often used because a pin rack was easier to manufacture than an involute rack. Nowadays, if you want a quick and inexpensive solution for a linear drive, you buy a commercially available chain and clamp it as a rack.

The load on the sprocket is significantly higher with a rack drive than with a chain drive because the torque is transmitted by a single tooth. ZM2 also calculates a sprocket with a pin wheel instead of a pin rack.

ZM3: Software for Synchronous Belt Drive

For synchronous belts according to ISO 17396:2017 (T and AT), ISO 13050:2016 (G, H, R, S) and ISO 5296:2012 there will soon be a new software ZM3. ISO 5296 with inch pitch (MXL, XXL, XL, L, H, XH, XXH) has been withdrawn, apparently the metric dimensions have prevailed.

😤 ZM3 Dimensions		_		\times
Type ISO 5296 (X, L, H) ISO 17396 - T ISO 17396 - AT ISO 13050 - G ISO 13050 - H ISO 13050 - R ISO 13050 - S	Size H3M H5M H8M H14M H20M	Width • 6 • 9 • 15 b 6 mm		
no. of teeth z1 10 no. of teeth z2 30 center distance a ca. 29,	● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	Single belt or dout single-sided symmetrical do asymmetric dou	uble-sided	
borehole diameter dB1 4,1 borehole diameter dB2 21	mm ∢ mm ∢	∲ flange 1 ∲ flange 2 m <> inch Ca	lc	

ZAR4: Export of diagrams into Excel

The parameters of the diagrams travel, speed, acceleration s, v, a = f (phi1), transmission ratio i = f (phi1) and angle of rotation phi2 = f (phi1) can now also be exported as an Excel table.

SR1 / SR1+: Bolt materials 3.7165 (Ti6Al4V) and 3.4365.71 (Al7075 T6 / T651) added

Titanium and aluminum were added as screw materials.

SR1 / SR1+: change in preload force delta FVth

The change in preload force at temperature is now also printed. This value can be positive or negative, depending on the temperature expansion coefficient of the materials of the bolt and clamping plate.

Floating licenses: No virtual server or variable path

Floating licenses from HEXAGON software should be installed on a physical server. When installing on a virtual server or a variable path (..X\$) you will sooner or later receive an "invalid license code" error message. Exception: the hardware behind the virtual server is always the same. A HEXAGON floating license is a "floating user license", not a "floating server license".

Warm corona money rain as a Christmas gift from the German government

Companies that are closed due to the Corona receive an amount of 75% of sales as compensation. Of sales! A great business for companies with a lot of turnover and little profit. Get 75% of turnover, without expenditure for goods nor for employees. The difference between gross and net, between sales and profits, between grants and loans seems difficult to discern for full-service officials and politicians. But what would be a fairer alternative for this mindless grant practice? Quite simply: instead of a grant, the government grants an interest-free loan (with 75% of sales as an upper limit).

Corona vaccination probabilities

As soon as a pharmaceutical manufacturer announces that it has a corona vaccine, Spahn and von der Leyen buy everything away. Worse than the toilet paper hamsterers in the supermarket. In at least 90% of the cases, the vaccination with our serum is successful, promises the company Biontech. It even could be 95%. 5 to 10% scrap. A recall campaign would be the result for industrial products. Not so with medication. Theoretically, one could also fill the ampoules with placebos. Anyone who gets infected with corona despite being vaccinated is one of the 5 to 10%. But: Even of the unvaccinated, more than 90% will almost certainly not be infected with the coronavirus. In no country in the world are there more than 10% corona infected residents. Seen in this way, the likelihood of infection for vaccinated and non-vaccinated people is about the same.

Last corona message on December 17th, 2020

In Germany, the cordoning off of areas with particularly high numbers of infections is being checked, reports the ARD today. My comment on this: They should better cancel international flights and close borders. The world's highest new infections (7-day incidence) are in Turkey with 1200, followed by Luxembourg with 700. A lockdown is of little use if the virus is spread unhindered by travelers on public transport. At the Berlin and Stuttgart airports alone, 2 to 3 planes from Istanbul, the Turkish Corona hotspot, land every day. I do not believe that these passengers will all go into voluntary quarantine immediately.

Words of the year 2020

Distance rule, hygiene rules, lockdown, curfew, ban on contact, generation Corona.

HEXAGON PRICE LIST 2021-01-01

Base price for single licences (perpetual)	EUR
DI1 Version 1.2 O-Ring Seal Software	190
DXF-Manager Version 9.1	383
DXFPLOT V 3.2	123
FED1+ V31.1 Helical Compression Springs incl. spring database, animation, relax., 3D,	695
FED2+ V21.8 Helical Extension Springs incl. Spring database, animation, relax, ob,	675
FED3+ V21.3 Helical Torsion Springs incl. prod.drawing, animation, 3D, rectang.wire,	600
FED4 Version 7.8 Disk Springs	430
FED5 Version 16.6 Conical Compression Springs	741
FEDS Version 10.0 Complexion Springs FED6 Version 17.1 Nonlinear Cylindrical Compression Springs	634
FED7 Version 14.2 Nonlinear Compression Springs	660
FED8 Version 7.3 Torsion Bar	317
FED9 Version 6.4 Spiral Spring	317
FED10 Version 4.4 Leaf Spring	500
	210
FED11 Version 3.6 Spring Lock and Bushing	
FED12 Version 2.7 Elastomer Compression Spring	220
FED13 Version 4.2 Wave Spring Washers	228
FED14 Version 2.5 Helical Wave Spring	395
FED15 Version 1.6 Leaf Spring (simple)	180
FED16 Version 1.3 Constant Force Spring	225
FED17 Version 2.0 Magazine Spring	725
GEO1+ V7.4 Cross Section Calculation incl. profile database	294
GEO2 V3.2 Rotation Bodies	194
GEO3 V3.3 Hertzian Pressure	205
GEO4 V5.2 Cam Software	265
GEO5 V1.0 Geneva Drive Mechanism Software	218
GEO6 V1.0 Pinch Roll Overrunning Clutch Software	232
GEO7 V1.0 Internal Geneva Drive Mechanism Software	219
GR1 V2.2 Gear construction kit software	185
GR2 V1.1 Eccentric Gear software	550,-
HPGL-Manager Version 9.1	383
LG1 V6.6 Roll-Contact Bearings	296
LG2 V3.1 Hydrodynamic Plain Journal Bearings	460
SR1 V23.7 Bolted Joint Design	640
SR1+ V23.7 Bolted Joint Design incl. Flange calculation	750
TOL1 V12.0 Tolerance Analysis	506
TOL2 Version 4.1 Tolerance Analysis	495
TOLPASS V4.1 Library for ISO tolerances	107
TR1 V6.2 Girder Calculation	757
WL1+ V21.6 Shaft Calculation incl. Roll-contact Bearings	945
WN1 V12.3 Cylindrical and Conical Press Fits	485
WN2 V10.3 Involute Splines to DIN 5480	250
WN2+ V10.3 Involute Splines to DIN 5480 and non-standard involute splines	380
WN3 V 6.0 Parallel Key Joints to DIN 6885, ANSI B17.1, DIN 6892	245
WN4 V 5.1 Involute Splines to ANSI B 92.1	276
WN5 V 5.1 Involute Splines to ISO 4156 and ANSI B 92.2 M	255
WN6 V 4.1 Polygon Profiles P3G to DIN 32711	180
WN7 V 4.1 Polygon Profiles P4C to DIN 32712	175
WN8 V 2.5 Serration to DIN 5481	195
WN9 V 2.4 Spline Shafts to DIN ISO 14	170
WN10 V 4.3 Involute Splines to DIN 5482	260
WN11 V 2.0 Woodruff Key Joints	240
WN12 V 1.2 Face Splines	256
WN13 V 1.0 Polygon Profiles PnG	238
WN14 V 1.0 Polygon Profiles PnC	236
WNXE V 2.2 Involute Splines – dimensions, graphic, measure	375
WNXK V 2.1 Serration Splines – dimensions, graphic, measure	230
WST1 V 10.2 Material Database	235
ZAR1+ V 26.7 Spur and Helical Gears	1115
ZAR2 V8.1 Spiral Bevel Gears to Klingelnberg	792

ZAR3+ V10.4 Cylindrical Worm Gears	620
ZAR4 V6.1 Non-circular Spur Gears	1610
ZAR5 V12.3 Planetary Gears	1355
ZAR6 V4.2 Straight/Helical/Spiral Bevel Gears	585
ZAR7 V2.2 Plus Planetary Gears	1380
ZAR8 V1.8 Ravigneaux Planetary Gears	1950
ZAR9 V1.0 Cross-Helical Screw Gears	650
ZARXP V2.6 Involute Profiles - dimensions, graphic, measure	275
ZAR1W V2.5 Gear Wheel Dimensions, tolerances, measure	450
ZM1.V3.0 Chain Gear Design	326

PACKAGES	EUR
HEXAGON Mechanical Engineering Package (TOL1, ZAR1+, ZAR2, ZAR3+, ZAR5, ZAR6, WL1+, WN1,	
WN2+, WN3, WST1, SR1+, FED1+, FED2+, FED3+, FED4, ZARXP, TOLPASS, LG1, DXFPLOT, GEO1+,	8,500
TOL2, GEO2, GEO3, ZM1, WN6, WN7, LG2, FED12, FED13, WN8, WN9, WN11, DI1, FED15, WNXE, GR1)	
HEXAGON Mechanical Engineering Base Package (ZAR1+, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WST1,	4,900
SR1+, FED1,+, FED2+, FED3+)	4,300
HEXAGON Spur Gear Package (ZAR1+ and ZAR5)	1,585
HEXAGON Planetary Gear Package (ZAR1+, ZAR5, ZAR7, ZAR8, GR1)	3,600
HEXAGON Involute Spline Package (WN2+, WN4, WN5, WN10, WNXE)	1,200
HEXAGON Graphic Package (DXF-Manager, HPGL-Manager, DXFPLOT)	741
HEXAGON Helical Spring Package (FED1+, FED2+, FED3+, FED5, FED6, FED7)	2,550
HEXAGON Complete Spring Package (FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED8, FED9,	4,985
FED10, FED11, FED12, FED13, FED14,, FED15, FED16, FED17)	
HEXAGON Tolerance Package (TOL1, TOL1CON, TOL2, TOLPASS)	945
HEXAGON Complete Package (All Programs)	14,950

Quantity Discount for Individual Licenses

Licenses	2	3	4	5	6	7	8	9	>9
Discount %	25%	27.5%	30%	32.5%	35%	37.5%	40%	42.5%	45%

Network Floating License

noth of the roading in										
Licenses	1	2	3	4	5	6	78	911	>11	
Discount/Add.cost	-50%	-20%	0%	10%	15%	20%	25%	30%	35%	
			~							

(Negative Discount means additional cost)

Language Version:

- German and English : all Programs

- French: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9, FED10, FED13, FED14, FED15, TOL1, TOL2.

- Italiano: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9, FED13, FED14, FED17.
- Swedish: FED1+, FED2+, FED3+, FED5, FED6, FED7.
- Portugues: FED1+, FED17
- Spanish: FED1+, FED2+, FED3+, FED17

Updates:

Update prices	EUR
Software Update (software Win32/64 + pdf manual)	40
Software Update (software 64-bit Win + pdf manual)	50

Update Mechanical Engineering Package: 800 EUR, Update Complete Package: 1200 EUR **Maintenance contract** for free updates: annual fee: 150 EUR + 40 EUR per program

Hexagon Software Network Licenses

Floating License in the time-sharing manner by integrated license manager.

Conditions for delivery and payment

Delivery by Email or download (zip file, manual as pdf files): EUR 0.

General packaging and postage costs for delivery on CD-ROM: EUR 60, (EUR 25 inside Europe) Conditions of payment: bank transfer in advance with 2% discount, or PayPal (paypal.me/hexagoninfo) net. After installation, software has to be released by key code. Key codes will be sent after receipt of payment.

HEXAGON Industriesoftware GmbH

 Stiegelstrasse 8
 D-73230 Kirchheim
 Tel. +49 7021 59578,
 Fax +49 7021 59986

 Mobile: +49 163 7342509
 E-Mail: info@hexagon.de
 Web: www.hexagon.de