HEXAGON Newsletter 169

by Fritz Ruoss

Spring programs: energy-mass ratio as indicator for efficiency and lightweight construction In the spring programs a new factor is introduced: energy-mass-ratio (W0n/m) as indicator, how much energy can be stored with 1 kg of spring material. This allows you to compare different spring types, materials and cross-sectional shapes. Therefore, "Wn/m" is also included in the table under "File-> Open Table".

FED	1+ h:\AP	PS\TP\tra	iin\								_		×
File Ed	lit Help												
s 1	s2	sn	sc	sh	sk	tauz/k2	tauhz/l	cycl.M:	t life	m [g]	W	Wn/m	^
10,27	18,65	22,06	24,84	8,38		0,72	0,19	0,0005	0,1	35	5,39	195	
2,00	10,00	12,11	14,08	8,00	12,61	1,37	1,48	> 10	infinit	2	7,33	198	
1,16	9,16	25,38	29,01	8,00		3,63	2,59	> 10	infinit	8	9,69	201	
1,16	9,16	25,38	29,01	8,00		3,63	2,59	> 10	infinit	8	9,69	201	
12,00	33,00	50,34	59,75	21,00	36,53	1,81	1,02	> 10	infinit	41	8,00	203	
38,73	41,53	49,84	67,41	2,80	16,89	1,27	2,75	> 10	infinit	104	4,28	207	
38,80	41,60	49,81	67,40	2,80	16,89	1,27	2,73	> 10	infinit	104	4,28	207	
15,00	18,00	26,38	28,38	3,00		2,44				1	15,00	207	
8,12	8,82	10,16	12,02	0,70	6,09	1,52	4,65	> 10	infinit	1	6,78	212	
4,00	8,40	15,54	20,11	4,40	8,30		-0,32	0	0	14	4,75	212	
12,00	26,00	71,81	77,69	14,00	27,14	1,61	0,96	7,6	2102	90	8,00	214	
12,00	50,00	67,79	77,79	38,00	27,72	1,43	1,24	> 10	infinit	97	8,00	215	
12,00	33,00	50,34	59,75	21,00	35,89	2,03	1,12	> 10	infinit	40	8,00	215	
10,00	50,00	67,69	77,69	40,00	27,69	1,51	1,57	> 10	infinit	97	8,00	215	
0,00	1,00	1,88	2,04	1,00		2,21	0,84			0	6,64	215	
8,50	10,90	11,14	11,93	2,40		0,69	-1,34			9	6,03	216	
12,00	24,00	71,13	77,79	12,00	27,77	3,48	2,04			98	8,00	216	
2,90	7,95	8,46	9,99	5,05	2,05	1,45	1,14	> 10	infinit	0	6,80	217	
7,00	17,00	21,15	23,44	10,00	21,00	1,73	0,96	7,0	1933	1	10,75	218	
16,40	17,00	19,27	23,23	0,60	9,40	1,30	4,65	> 10	infinit	8	6,00	218	
12,05	13,32	13,49	14,43	1,27		1,28	2,64	> 10	infinit	0	19,68	219	
6,55	7,55	11,22	12,83	1,00		1,82	5,11	> 10	infinit	1	7,44	221	
32,00	53,00	67,74	77,74	21,00	27,14	1,34	0,95	7	194	97	8,00	222	× 1
<													>

The energy-mass ratio also decreases for increasing wire diameters because the tensile strength decreases. At first glance it is also astonishing to compare a spiral spring with a leaf spring made from the same piece of steel strip. The compared spiral spring could store 10 times more energy than the unrolled leaf spring. This is because the bending stress in the spiral spring is distributed over all coils, whereas with a clamped leaf spring the highest bending stress occurs at the bearing position. On the other hand, a torsion bar spring has almost identical values compared to a helical compression spring, because torque and shear stress is constant over the entire length. The energy-mass ratio of rubber compression springs is surprisingly high. No wonder, because tensile pressure is distributed constant over the entire material volume. Metal springs are not practical in this form, cause spring travel is too small. But when using rubber springs as energy storage, hysteresis, relaxation and switching times should also be taken into account. In contrast, helical springs are applied to torsion, and torsion springs and leaf springs on bending. The highest stress occurs only on the external fibres. In the neutral fibre in the middle there is no tension at all (waste of material). With hollow wire one could improve the material utilization.

Spring Programs: spring energy efficiency

Another new degree of energy efficiency = W02/W0n or W02/W0z is used to indicate how much of the maximum usable energy of the spring will be used for the application. It should be noted that the degree of utilization can only be 100% for static applications, in case of dynamic application the (static) energy utilization factor must be less than 100%. For all springs except helical compression springs, disc springs and wave springs, the usable spring travel sn and the usable spring energy Wn are limited by the permissible shear stress or permissible bending stress. In contrast, helical compression springs are usually designed block safe so that the permissible shear stress cannot be reached at all, because the spring is previously on block. For this case, a theoretical spring energy W0z is calculated for helical compression springs, disc springs and wave springs, disc springs and wave springs.

spring energy	between s1 and s2	W12	Nmm	186047
spring energy	s2	W02	Nmm	248063
spring energy	sn	WOn	Nmm	1699018
spring energy	sc	W0c	Nmm	2090832
spring energy	tauz	WOz	Nmm	408125
spring energy	min(sn,tauz)	Wn	Nmm	408125
energy efficie	ency	W02/W0z		61 %
energy-mass ra	atio	Wn/m	Nm/kg	257

FED1+: Fn' = F(tauz), W0z = f(tauz)

In the case of springs, the index n stands for usable length Ln, usable spring force Fn, usable stress taun = permissible stress tauz. In the case of compression springs, index n stands for the usable spring travel sn = Block Length sc - safety distance Sa. If the spring is not block resistant and the permissible shear stress is already exceeded at spring travel sn, another usable spring force Fn ' at the spring travel sn ' appears in the F-s diagram. For this case, the spring energy W0z at spring travel sn ' has been added now, this means the usable spring energy until the permissible shear stress is reached.

FED2+ Quick Input

New Quick Input contains all input data integrated in only one large input window. The old input windows (base data, text, material, production, tolerance, application, loops) remain available.

FED2+: Get default loop height

In FED2 + there are also several special methods for dimensioning and recalculation of tension springs (online input). Under "Edit\Dimension" and "Edit\Recalculation" a suitable loop height (depending on the selected loop) is now suggested when you input LH1=0 or LH2=0.

FED2+	Recalculatio	n				
Input			Output			Error Messages
d	1,2	mm	F1	16,84	N	Error : taukh>tauhperm! S=0,99
De	10	mm	F2	46,5	N	Warning: taukh !
n	10,000		R	2,967	N/mm	Warning: Sig.qh>sig.hz S=0,69
LH1	0	mm	Ln	47,78	mm	Warning: T <t1relax (80°c)<="" td=""></t1relax>
LH2	6,8	mm	tau k1	259,7	MPa	
FO	7,346	N	tau k2	717,3	MPa	
L1	30	mm	tau kh	457,5	MPa	
L2	40	mm	tau perr	n902,5	MPa	
T	20	°C	LO	26,8	mm	
			s1	3,2	mm	
			\$2	13,2	mm	
0	K	<u>H</u> elp			A	Aux. Image Close

FED2 +: Torsional spring rate of extension springs

If the loops are twisted against each other, the tension spring is used like a torsion spring. For this case the torsional spring rate cm in Nmm/° is now calculated and printed.

FED9: Usable spring travel of spiral springs

The usable spring travel is limited by the permissible bending stress. If the permissible bending stress is not exceeded even with full suspension on block, a safety distance Sa should be maintained, similar to the helical compression springs according to EN 13906. Since there is unfortunately no standard for spiral springs, in FED9 now similar to EN13906 "Sa = n * 0.1 * d" or "Amin = 0.1 * d" is set at static load. At dynamic load of warm-formed springs, Sa is doubled and with cold-coiled springs, Sa is 1.5-fold, analogous to EN 13906.

FED12: Spring Energy W = f (s)

New in FED12 for rubber springs is a diagram of the spring energy.

FED1+: Relaxation table

The relaxation table for working temperature and temperature limits in the Rx = f(t) diagrams had been removed for some time, because the temperature and material-dependent calculation of the shear module in accordance with the current EN standard made the calculation more difficult. The relaxation table is now displayed again.

WN4,5,6,7,8,9,12, WNXE, WNXK, LG2: Production drawing in standardized scale

So far, a drawing of the calculated machine element has been fitted in an A4 sheet in maximum size. Now the drawing is inserted in the next smaller standard scale 1:1, 1:2, 1:5, 2:1, 5:1 etc.

LG2: Quick3 View and Quick4 View

New in LG2 are Quick3 View and Quick4 View with drawing of the journal bearing and tables with dimensions and calculation results altogether on one screen (print with Ctrl-P or File\Print)

GEO4, ZAR4: Area, Area moment of inertia, center of gravity

For cams and noncircular gears, a table with area, area moments of inertia and coordinates of gravitation center has been added. Calculation and table are same as in GEO1.

💽 GEO4 Software for cams and cam dis	ks	. –										
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>C</u> AD <u>S</u> TL D <u>o</u> cume	ent <u>F</u>	<u>l</u> elp										
cam curve												
Cross section area A mm ² 349												
Area moment of inertia 1.grd.	Hy	mm³	316,6									
Area moment of inertia 1.grd.	Hz	mm³	182,8									
Ax.Area moment of inertia 2.grd.	ly	mm4	10896									
Ax.Area moment of inertia 2.grd.	lz	mm4	9200									
Mix.Area moment of inertia 2.grd.	lyz	mm4	1469									
Pol.Area moment of inertia 2.grd.	lp0	mm4	20096									
Ctr.of grav.coordinates	ys	mm	0,524									
Ctr.of grav.coordinates	ZS	mm	0,907									
Ax.Area moment of inertia ctr.grv.	leta	mm4	10609									
Ax.Area moment of inertia ctr.grv.	Izeta	mm4	9104									
Mix.Area moment of inertia ctr.grv.	lez	mm4	1303									
Pol.Area moment of inertia ctr.grv.	lpS	mm4	19713									
Main area moment of inertia 1	11	mm4	11361									
Main area moment of inertia 2	12	mm4	8352									
Main angle	phi	•	-30									

GEO4: Quick1, Quick3, Quick4 Views

New result screens Quick1, Quick3 and Quick4 with drawings, tables and diagrams of the calculated cams and cam shafts have been added to GEO4.

TOL2: Dialogue windows

There were error messages in the dialog boxes for entering groups and closing dimensions, and the TL1 file name was not displayed. If you get any errors in TOL2, please send a screenshot with the faulty dialog box, then you will receive a free update.

🔯 closing dim. 4	- 🗆 X
Comment total length	
from Group	to Group
1: tappet 002	0: Case 001
Group 1: tappet 🗸 🗸	Group 0: Case 🗸
Element 0: 0 Abschlußdeckel 🗸	Element 4: lower end ~
🗌 Limit ?	
OK Cancel	<u>H</u> elp

SR1: Thread strip safety

If standard screws and standard nuts of the same strength class are used, the thread strip safety must not be proven, because according to VDI 2230 no thread can be stripped down in this case. But if you choose and calculate the nut material, you will be amazed to find that you receive a warning about thread strip safety. In search of the cause, in PRESSURE.DBF database we modified shear stress ratio of the nut strength classes "QUAL12" to "QUAL3" according to the equivalent VDI2230 values of the bolt strength class "taub/Rm" to 0.6 and 0.7 (so far the value was 0.577 for all). But that's not enough yet. Safety factor increases, but remains below 1. Then you can still reduce the thread tolerances, ideally at 4h/4h. If this is still not enough, you could only reduce the non-bearing thread length of the chamfers. But then you will get a new warning "mzu < 2P". In the search for calculation examples, B2 from the VDI 2230 would be fine. A pity, under R11 stands only: "Omitted, since standardized nuts of a strength corresponding to the bolt are used." SR1 calculates a minimum depth meffmin = 12 mm using thread tolerance 6h/6g, but the bearing length of the nut is only 14.8 - 2 * P = 10.8 mm. The thread strip safety is then 0.9. According to VDI 2230, the minimum depth is calculated with tolerances for the worst case. The thread strip safety at Rmmax means that in case of overload the bolt breaks and does not strip the thread. If the load entered is not exceeded, the thread strip safety applies to FMzul + FSA.

To represent the bandwidth of the minimum thread length of engagement meff at the highest and smallest tolerance, SR1 and SR1 + now also calculate the minimum length of engagement at the smallest thread tolerances and minimum tensile strength of the bolt. With example B2 from VDI 2230 you get a bandwidth of 12.0 mm to 7.8 mm for the minimum depth meffmin, only by using min and max tolerance. This corresponds to a safety mtr/meffmin between 0.9 and 1.4.

Thread strip calculation factors C1, C2 and C3 of VDI 2230 have been added to the printout of SR1+ for proof and recalculation purpose.

Configure Dialog window and dialog elements

When large fonts or special dialog boxes are configured on Windows, the dialog boxes may be too large or too small. Then you have to configure "File\Settings\Graphics" "dialog window size" and appropriately "dialog element size". Default setting is 100% (first select "Input"). In previous versions you could drag the dialog box even bigger or smaller, but in newer versions there were mostly no scroll bars. So you had to configure the dialog window size correctly first. This change has now been reversed, so that even if the configuration is incorrect, you are not forced to cancel the calculation and to configure the dialog boxes first.

SR1+ Cor	nfiguration								-		×
Directories	Graphics	CAD	Colour	Printer	Printout	Settings	external	Drawing			
Color graphicsdialog window size \bigcirc color3840 x 2160 \bigcirc monochrombackground colour \bigcirc monochrombackground colour \bigcirc window SizeZoomx 640<											<
Ir	nput	~						-15 🗹 3D) Edit x,y,	210	
Style: 3 ■ Border line ✓ 27.06.2018 7:57 - HEXAGON SR1+ V23.0 #0131 - HILTI Deutschland, Kaufering Text ✓ Font Arial ✓ Style: 3 Textwidth/height 0.8 ✓ Text height factor											
			OK		Cancel		<u>S</u> ave	Exp	port	Im	port

Comment about trade dispute and climate protection

Instead of responding to the US import duties on steel and aluminum with questionable "punitive tariffs" on whiskey, jeans, peanut butter and motorcycles, and thus to take off a customs avalanche, the EU should better appreciate import tariffs on steel and aluminium as an active contribution of the United States to global climate protection. Because it makes no sense to ship tons of steel and aluminum with high energy and pollutant emissions across land and across the oceans. Also, the exit of Donald Trump from the climate change agreement is only honest: If I can't reach a goal, I'll admit that and leave it out. On the other hand, the other members of the climate change agreement are in breach of all climate protection goals, without any consequences. For the improvement of the carbon footprint of the exporting countries, the St-Al tariffs of the USA are helpful because the steel and aluminium production is extremely energy intensive. And the level of US tariffs is not beyond the range: for bicycles from China, the European Union is raising a whopping 63.5% import duty (15% "normal" customs + 48.5% anti-dumping duty). That is why today in Europe you pay more money for a simple children's bike than for a four-stroke lawnmower with gasoline engine.

HEXAGON PRICELIST 2018-07-01

PRODUCT	EUR
DI1 Version 1.2 O-Ring Seal Software	190
DXF-Manager Version 9.1	383
DXFPLOT V 3.2	123
FED1+ V30.5 Helical Compression Springs incl. spring database, animation, relax., 3D,	695
FED2+ V21.1 Helical Extension Springs incl. spring database, animation, relaxation,	675
FED3+ V19.4 Helical Torsion Springs incl. prod.drawing, animation, 3D, rectang.wire,	480
FED4 Version 7.6 Disk Springs	430
FED5 Version 16.0 Conical Compression Springs	741
FED6 Version 16.6 Nonlinear Cylindrical Compression Springs	634
FED7 Version 13.6 Nonlinear Compression Springs	660
FED8 Version 7.2 Torsion Bar	317
FED9 Version 6.2 Spiral Spring	394 -
FED10 Version 4.2 Leaf Spring	500 -
FED11 Version 3.5. Spring Lock and Bushing	210 -
FED12 Version 2.6 Elastomer Compression Spring	210.
FED12 Version 4.1. Wave Spring Washers	220.
FED14 Version 2.1. Helical Wave Spring	305 -
FED15 Version 1.5 Leaf Spring (simple)	180 -
EED16 Version 1.2 Constant Force Spring	225
FED17 Version 1.6 Magazine Spring	725
CEO1 / Version 1.0 Magazine Spring	723
GEO1+ V7.3 Cross Section Calculation Incl. profile database	294
GEO2 V3.1 Rotation Bodies	194
GEO3 V3.3 Hertzlah Pressure	205
GEO4 V5.0 Cam Software	265
GEO5 V1.0 Geneva Drive Mechanism Software	218
GEO6 V1.0 Pinch Roll Overrunning Clutch Software	232
GR1 V2.1 Gear construction kit software	185
HPGL-Manager Version 9.1	383
LG1 V6.6 Roll-Contact Bearings	296
LG2 V3.0 Hydrodynamic Plain Journal Bearings	460
SR1 V23.0 Bolted Joint Design	640
SR1+ V23.0 Bolted Joint Design incl. Flange calculation	750
TOL1 V12.0 Tolerance Analysis	506
TOL2 Version 4.1 Tolerance Analysis	495
TOLPASS V4.1 Library for ISO tolerances	107
TR1 V6.0 Girder Calculation	757
WL1+ V21.2 Shaft Calculation incl. Roll-contact Bearings	945
WN1 Version 12.0 Cylindrical and Conical Press Fits	485
WN2 V10.1 Involute Splines to DIN 5480	250
WN2+ V10.1 Involute Splines to DIN 5480 and non-standard involute splines	380
WN3 V 5.4 Parallel Key Joints to DIN 6885, ANSI B17.1, DIN 6892	245
WN4 V 4.8 Involute Splines to ANSI B 92.1	276
WN5 V 4.8 Involute Splines to ISO 4156 and ANSI B 92.2 M	255
WN6 V 3.1 Polygon Profiles P3G to DIN 32711	180
WN7 V 3.1 Polygon Profiles P4C to DIN 32712	175
WN8 V 2.3 Serration to DIN 5481	195
WN9 V 2.3 Spline Shafts to DIN ISO 14	170
WN10 V 4.2 Involute Splines to DIN 5482	260
WN11 V 1.3 Woodruff Key Joints	240
WN12 V 1.1 Face Splines	256
WNXE V 2.2 Involute Splines - dimensions, graphic, measure	375
WNXK V 2.1 Serration Splines - dimensions, graphic, measure	230
WST1 V 10.2 Material Database	235
ZAR1+ V 26.3 Spur and Helical Gears	1115 -
ZAR2 V8.0 Spiral Bevel Gears to Klingelnberg	792 -
ZAR3+ V9.0 Cylindrical Worm Gears	620 -
ZAR4 V6.0 Non-circular Spur Gears	1610 -
ZAR5 V11.7 Planetary Gears	1355 -
ZAR6 V4.0 Straight/Helical/Spiral Bevel Gears	585 -
	555.

ZAR7 V1.5 Plus Planetary Gears	1380
ZAR8 V1.4 Ravigneaux Planetary Gears	1950
ZARXP V2.2 Involute Profiles - dimensions, graphic, measure	275
ZAR1W V2.1 Gear Wheel Dimensions, tolerances, measure	450
ZM1.V2.5 Chain Gear Design	326

PACKAGES	EUR
HEXAGON Mechanical Engineering Package (TOL1, ZAR1+, ZAR2, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WN2+, WN3, WST1, SR1+, FED1+, FED2+, FED3+, FED4, ZARXP, TOLPASS, LG1, DXFPLOT, GEO1+, TOL2, GEO2, GEO3, ZM1, WN6, WN7, LG2, FED12, FED13, WN8, WN9, WN11, DI1, FED15, WNXE, GR1)	8,500
HEXAGON Mechanical Engineering Base Package (ZAR1+, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WST1, SR1+, FED1,+, FED2+, FED3+)	4.900,-
HEXAGON Spur Gear Package (ZAR1+ and ZAR5)	1,585
HEXAGON Planetary Gear Package (ZAR1+, ZAR5, ZAR7, ZAR8, GR1)	3,600
HEXAGON Involute Spline Package (WN2+, WN4, WN5, WN10, WNXE)	1,200
HEXAGON Graphic Package (DXF-Manager, HPGL-Manager, DXFPLOT)	741
HEXAGON Helical Spring Package (FED1+, FED2+, FED3+, FED5, FED6, FED7)	2,550
HEXAGON Complete Spring Package (FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED8, FED9, FED10, FED11, FED12, FED13, FED14,, FED15, FED16, FED17)	4,985
HEXAGON Tolerance Package (TOL1, TOL1CON, TOL2, TOLPASS)	945
HEXAGON Complete Package (All Programs)	12,900

Quantity Discount for Individual Licenses

Licenses	2	3	4	5	6	7	8	9	>9
Discount %	25%	27.5%	30%	32.5%	35%	37.5%	40%	42.5%	45%

Network Floating License

······································												
Licenses	1	2	3	4	5	6	78	911	>11			
Discount/Add.cost	-50%	-20%	0%	10%	15%	20%	25%	30%	35%			
(Negative Discount m	oone oddi	tional cost	F)									

(Negative Discount means additional cost)

Language Version:

- German and English : all Programs
- French: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9, FED10, FED13, FED14, FED15, TOL1, TOL2.
- Italiano: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9, FED13, FED14, FED17.
- Swedish: FED1+, FED2+, FED3+, FED5, FED6, FED7.
- Portugues: FED1+, FED17
- Spanish: FED1+, FED2+, FED3+, FED17

Updates:

Update prices	EUR
Software Update (software Win32/64 + pdf manual)	40
Software Update (software 64-bit Win + pdf manual)	50

Update Mechanical Engineering Package: 800 EUR, Update Complete Package: 1000 EUR Maintenance contract for free updates: annual fee: 150 EUR + 40 EUR per program

Hexagon Software Network Licenses

Floating License in the time-sharing manner by integrated license manager Individual licenses may not be installed in a network!

Conditions for delivery and payment

General packaging and postage costs for delivery on CD-ROM: EUR 60, (EUR 25 inside Europe) Delivery by Email or download (zip file, manual as pdf files): EUR 0. Conditions of payment: bank transfer in advance with 2% discount, or by credit card (Master, Visa) net.

Key Code

After installation, software has to be released by key code. Key codes will be sent after receipt of payment.

HEXAGON Industriesoftware GmbH

Stiegelstrasse 8	D-73230 K	Circhheim	Tel. +49 7021 595	578, Fax +49 7021 59986
Kieler Strasse 1A	D-10115	Berlin	Mühlstr. 13	D-73272 Neidlingen
Mobile: +49 163 7	342509	E-Mail: in	nfo@hexagon.de	Web: http://www.hexagon.de