by Fritz Ruoss

FED1+, 5, 6, 7, 17: Production Drawing German/English

Production drawing in dual language German/English can be generated for compression springs now (View, Print, CAD DXF/IGES).

FED3+: 3D Centerline as STEP file

Centerline of torsion spring can be generated as STEP file to the loaded into CAD.

FED9,10,13,14,15,16: Incoloy A-286

Incoloy A-286 (spring temper and spring temper + aged) has been added in the material database fed9wst.dbf.

FED1+, 5, 6, 7, 17: Production Drawing International DE, EN, FR, IT, SV, PT, ES, NL

Production drawing of compression spring can now be generated in German, English, French, Italian, Swedish, Spanish, Portugues and Dutch language.

At "View -> Production drawing International" you can choose the desired drawing language.

FED2+: Production drawing International DE,EN,FR,IT,SV,ES,NL

Production drawing of extension springs can now be generated in German, English, French, Italian, Swedish, Spanish and Dutch language.

-	m.	FED2+ Extension Spring Software - exemple.fd2			_		×
E	ile	<u>E</u> dit <u>V</u> iew <u>C</u> AD <u>D</u> atabase D <u>o</u> cument O <u>L</u> E	<u>H</u> elp				
E	Nîi Po	L0 = 46, 13 ± 1, 1 L0 = 46, 13 ± 1, 1 L2 = 69, 19 L2 = 69, 19 Ln = 95,24 nsérer que des données fonctionnelles et cocher la case correspondante. I ur une fabrication rentable choisir des écarts admissibles aussi grands que	- Viter d'	insérer des informations sur les mesures le		(L = 756mm) (P = 1,2mm) (m = 6,755 g)	E
D	1	Nombre de spires utiles n = 26,1	1	Déviation admissib Gra	le selon DIN Ide	1 2097	D
	2	Sens d'enroulement droite Ogauche O		1 De, Di, (Dm) L0	2	3 0	_
	3	Type et dimensions des deux boucles Boucles selon EN 13906-2:2013, Fig. A.2 Boucle resp. ouvert.boucle déplacée position b. 39431.4 decré (cens d'une vis à droite)		F0 O F1Fn O Orient.ceillets O			
	4	Course du travail sh = 13,2 mm		Diamètre d selon le derni-pri en fil DIN 2076 C	xx oduit utilisé		
	5 6	Fréquence de charges f = 5 - Température de travail 0 100 °C	4	Compromis de fabrication		valeurs libre	
	7	Surface de fil tréfilé X laminé O		a)une force du ressort et la longueur correspondante et L0		F0 et D (De, Di)	0
	8	grenaillage O		b)une force de ressort et la longueu correspondante et F0	r	L0 et d	
	٥	Matériaux - EN 10270-3-1 4588				LU et D (De Di)	9

FED4: STL Disk Spring

Disk spring can be generated as 3D STL model now.

FED1+,2+,3+,5,6,7,8,11,17: "OTEVA 91 not nitrided" modified

Strength properties for Goodman diagram of OTEVA 91 (VD-SiCrVMo) were too low in not nitrided state, because data strength values were based on d=1 instead to d=3.85mm. Data in fedwst.dbf have been corrected. Thanks to Mr. Gaedtke of HAWE Hydraulik for his hint.

FED1+,2+,3+,5,6,7,8,11,17: OTEVA 74 SC, OTEVA 76 SC, OTEVA 96 SC

3 new OTEVA valve spring wires have been added to the fedwst.dbf spring wire database: OTEVA 74 SC is an oil tempered SiCr-alloyed valve spring wire, shaved. Tensile strength and fatigue resistance is eaqual with OTEVA 75 SC (VD-SiCrV), but until 200°C only. OTEVA 76 SC is an oil tempered SiCrVNi-alloyed valve spring wire, shaved. Tensile strength and fatigue resistance is the same as OTEVA 75 SC (VD-SiCrV)

OTEVA 96 SC is an oil tempered SiCrVMo-alloyed valve spring wire, shaved. Tensile strength and fatigue resistance is the same as OTEVA 90 SC (VD-SiCrVMo)

The strength properties of OTEVA 90, 91, 96 are the same.

We have no relaxation charts for the OTEVA materials. In the data sheets there are such, but for preset springs only. Relaxation chart in data sheet shows that there is no further relaxation if working temperature is below 100 $^{\circ}$ C.

FED11: STL Model

FED11 generates a 3D model of the calculated spring lock or bushing as STL file now.

FED1+,2+,3+,5,6,7,8,11,17: Hot-rolled spring material to EN 10089

In EN standards there are 2 sources for the permissible shear stress of hot-formed compression springs: in EN 13906-1 (10.1.2) there is a diagram for tauzul depending on the wire or rod diameter, but irrespective of the material. EN 10089 includes min/max tensile strength of various materials. but irrespective of the diameter. The program calculates tauz = $840-250 \times \log(d/20)$, derived from the diagram in EN 13906, and tauz = 0.56 * rm to EN 10089. The smaller of the two values is used for calculation. Since this is usually the value of the EN 13906, the values from the database remain virtually ignored. Nevertheless, the material database FEDWST.DBF has now been modified that the tensile strength Rm depends on the diameter of the wire or rod. In adaptation to the diagram from EN 13906, Rmmin applies to d = 60mm and Rmmax for D < = 10mm. In the tau-d diagram, the curve for tauzmax is now additionally drawn in accordance with EN 13906 (if hot formed springs only). In the previous version, it was not possible to see where the value tauz comes from. For 38Si7 and 51CrV4, the curves are almost identical, whereas for materials of higher strength (e.g. 60SiCr7) the tauz curve from the database is significantly higher than the tauzmax curve according to EN 13906. In a later version, maybe we could add an option to ignore the permissible shear stress according to EN 13906 and use the higher value from the database instead, if there are reliable facts. I would be happy to accept suggestions and measured values from you.

For tension springs, tauzmax = 600 MPa is indicated for hot formed springs according to EN 13906, irrespective of wire or rod diameter. Else, tauz = 0.45 Rm should be used for tension springs according to EN 13906. FED2+ uses the smaller value of 600 MPa and 0.45 Rm. In most cases, 0.45 Rm is larger than 600 MPA, so the permissible shear stress for most hot-formed tension springs is Tauz = 600 MPa.

FED8: Torsion bar in egg shape

An egg-shaped cross-section is composed of a semicircle and a half ellipse. Thus also the mass moment of inertia and the polar area moment of inertia is calculated, as the sum of half circle and half ellipse. However, this is just an approximation.

GEO1+, TR1: Ellipse and Egg-shape

Generating of ellipse and egg-shape has been added in GEO1+ and TR1. GEO1+ calculates area moment of inertia, center of gravity and mass moment of inertia. TR1 additionally calculates bending curve and bending stress of the special shaped girder.

TR1: Quick3 and Quick4 View

Quick3 View and Quick4 View has been added to girder software TR1 with drawings of crosssection, bedding and loads, tables with input data and calculation results, altogether on one screen.

WN2+: Configure drawing with/without bore

If the tooth profile is used for conversion into a CNC program or for wire eroding, the drawing must be displayed without a bore hole. On the other hand, if you want to create an STL model on the 3D printer, you need the drawing with bore hole. For internal gearing, the bore hole diameter dB means the outer diameter of the hub (negative sign). There is also a new help picture, this one now belongs to WN2, 4, 5, 6, 7, 8, 9, 10, WNXE, WNXP, ZAR1 +,4, 5, 7, 8, ZARXP, ZAR1W.

ZAR4, GEO4: Half ellipse (Egg shape)

At ellipse gear input, you now also can generate an egg-shape gear composed by a half ellipse over 180° and a semicircle. Three types can be generated: Full ellipse, half ellipse with small radius semicircle, and half ellipse with large radius semicircle.

ZAR4 – center distance shift for flank clearance

Unlike round gears, the backlash is not adjusted by a flank tolerance, but by the center distance in the case of noncircular gears. Therefore you can now enter a center distance. This must be slightly larger (backlash/tan alpha) than the calculated center distance. In gear drawing and gear animation, the modified center distance is used now instead of the calculated zero-backlash center distance.

ZAR4 – DXF Import

The pitch curve of a noncircular gear wheel can be imported as a polyline in DXF format. If the polyline contains arcs, they are now taken in 1° increments.

ZAR4 – Printout List

Angle of rotation of gear wheels 1 and 2, radii, transmission ratio, speed and acceleration can now be displayed in 1 $^{\circ}$ increments.

ZAIM ZA	AR4 c:\temp\	outwin.txt					_	o x
<u>D</u> atei	<u>B</u> earbeiten							
	 phi1 *	phi2 °	r1 mm	r2 mm	i=r2∕r1	v2 1⁄s	a2 1/s2	
	1,0 2,0 3,0 4,0 5,0 7,0 8,0 10,0 11,0 12,0 12,0 14,0 15,0 16,0 17,0 18,0 19,0 20,0 21,0 22,0	$\begin{array}{c} -0,9\\ -1,7\\ -2,6\\ -3,4\\ -4,3\\ -5,2\\ -6,0\\ -6,9\\ -7,7\\ -8,6\\ -9,4\\ -10,3\\ -11,1\\ -11,9\\ -12,8\\ -13,6\\ -14,4\\ -15,3\\ -14,4\\ -15,3\\ -16,9\\ -17,7\\ -18,5\\ \end{array}$	55,00 54,98 54,96 54,90 54,85 54,85 54,80 54,67 54,67 54,67 54,61 54,61 54,22 54,21 54,21 54,21 54,21 54,33 54,21 54,33 54,21 54,33 54,21 54,33 54,21 54,33 54,21 54,33 54,21 54,33 54,21 54,33 54,21 54,33 54,33 54,33 54,33 54,33 53,61 53,33 53,33 53,33 53,33 53,33 53,51 5	63,87 63,90 63,93 63,97 64,01 64,01 64,01 64,27 64,27 64,27 64,34 64,54 64,54 64,54 64,54 64,54 64,54 64,54 64,54 64,55 65,25 65,58 65,68	1,161 1,162 1,163 1,164 1,165 1,167 1,167 1,171 1,171 1,174 1,177 1,181 1,188 1,192 1,197 1,201 1,201 1,201 1,201 1,201 1,201 1,202 1,217 1,223	0,00 0,90 0,90 0,90 0,90 0,90 0,89 0,89	$\begin{array}{c} 0,00\\ 0,00\\ -0,04\\ -0,05\\ -0,07\\ -0,08\\ -0,10\\ -0,11\\ -0,12\\ -0,14\\ -0,15\\ -0,16\\ -0,17\\ -0,16\\ -0,21\\ -0,21\\ -0,22\\ -0,22\\ -0,23\\ -0,24\\ -0,25\\ -0,25\\ -0,25\\ \end{array}$	
	23,0	-19,3	53,04	65,83	1,241	0,84	-0,26	~

ZAR4: Free transmission ratio for non-circumferential gears

ZAR4	×
pressure angle alpha 20 * <]
no. of teeth z1 18 😭 <	✓ gear pair non-circumferential no. of teeth z2 27
face width b 20 mm <]
🗹 m = const	
borehole diameter 1 4,1 mm <	
borehole diameter 2 4,1 mm <	
a 120 mm <	
OK Cancel Help Text	t Calc

For circulating nonlinear gears, the total transmission ratio must be 1 or 2 or larger integer. If only a sector of the nonlinear gear is used, e.g. for a control lever, then this restriction can be reduced, the total transmission ratio can then have any value. This case can now also be calculated in ZAR4, for this case choose "gear pair non-circumferential" and enter number of teeth of the counterwheel. Tooth profile is not closed at phi = 360° and matching teeth no longer run together. But there are also exceptions: if the pitch curve of gear 1 is symmetrical, the gear pair is also running if the total transmission ratio is 1.5 or 2.5.

See calculation for elliptic driving wheel with generated counter wheel for total transmission ratio of 1.5.

ZAR1+, ZAR1W: Draw tooth root fillet trochoide settings

ZAR1W		×
fillet resolution 30 💽 number of points for involute polycurve 20 💽 no. tooth shape ring gear 200 💽	 ✓ draw tooth root curve ? ✓ involute curve as Polyline ? ✓ draw diameters ? 	
no. tooth shape spur gear 30 凄	🗌 draw bore ?	<
gen.addend.modif.coef. involute xee xe	~ -0,14405	
gen.addend.modif.coef. tooth shape xeh xe	-0,14405	

If the option "Draw tooth root curve" is set under "CAD-> Settings", then the trochoide curve generated by cutting tool will be drawn in case of undercut. Without undercut, fillet of the cutting tool is drawn. In rare cases (for "lace" gearing tools with a low frontal tooth width) there is a gap between the cutting tool shape (yellow) and the tooth fillet curve (red) in this drawing. For this case there is now a second checkbox (!) on the right, then a trochoide curve is always drawn. However, this option is not suitable as a permanent setting because, for example, involute splines according to DIN 5480 are drawn with a spike. Sometimes (but not always) helps in this case to increase the fillet resolution setting.

FED1+,6,7,10,WL1+,GEO1+,2,4,SR1+,TOL1,TR1,WN1,ZAR4: Improved Input Tables

For tables for entering shaft sections at WL1 +, spring sections at FED6 and FED7, clamping plates at SR1 +, dimensions for GEO1 +, GEO2, GEO4, ZAR4, TR1, WN1, there are improvements to insert and delete rows, and export/import with Excel.

Buttons at input tables:

- +: add new row
- <+: add new row and copy data from previous row
- : delete last row
- +_ : insert new row at cursor position
- -_: delete row at cursor position
- Copy: copy marked cells into clipboard

Paste: fill cells with clipboard content at cursor position

New buttons are "+_" and "-_". Tables for large amount of data like dimensions in WL1+, TR1, GEO1+, GEO4, ZAR4, or load spectrum of gear programs additionally got a menu with import/export functions for data exchange with MS-Excel.

WN12 – New Software for Face Splines

The new WN12 software calculates the dimensions of face splines. Outside diameter, inner diameter, teeth, fillet radius and tooth tip clearance and tooth gap angle are input data. WN12 calculates the surface area, surface pressure and safety factor from torque, preload and material data. The tooth drawing is generated by the program and can be exported to CAD. A model of a ring with face spline can be made with 3D printers, WN12 generates an STL file for it. Standard sizes can be selected from the integrated database. Alternatively, the dimensions for self-defined face splines can be entered directly.

🚻 WN12 - Hirth face spline - n12z48.w12		_		×
<u>File Edit View CAD STL Database Docu</u>	ment O <u>L</u> E <u>H</u> elp			
	N/2 D/25			
	N12-D125	-	<u> </u>	40
	Gap angle	2	•	40 60 00
	Gap angle	gannia		425.00
	major diameter	De Di	mm	125,00
	hoight	ba	mm	46 70
	Height until tooth contor	ham	mm	15.00
	tooth height exterior	he	mm	13,00
	tooth height interior	hi	mm	2.05
	tooth height angle	aloha	•	3 23
	tooth fillet	r	mm	0.92
	tooth tin width	bk	mm	2 13
	tip clearance	S	mm	0.92
	pressure beight exterior	hne	mm	3 40
	torque	Tmax	Nm	1700
	Tangential force	Fu	N	32381
	axial load	Fa	N	18695
	axial preload	Fva	N	14021
	area	Az	mm=	2512
	pressure	pmax	MPa	20
	material: S235JR (St 37-2)	1.0037		
	yield strength	Re	MPa	235
	load bearing coeff.	klamb.		0,65
	Perm.surface pressure	plim	MPa	282
	safety plim/pmax	Sp		14,1
	Error : Eva < Fa		-	
	Warning: Fya/Fa < 1.8			

Because there is no ISO or DIN standard for face splines, you can display and print out the names and formulas used in WN12.

<u>F</u> ile <u>E</u> d	lit <u>V</u> iew <u>C</u> AD	<u>s</u> tl	<u>D</u> ata	base	Docume	nt O <u>L</u> E	<u>H</u> elp			
No. of tee	eth	z		12	7	torque		Tmax	Nm	80
Gap angle	e	gamma	۰	60,00		axial pre	load	Fva	Ν	6150
major dia	meter	De	mm	30,00		material:	S275JRC (St 44	-2) 1.0044		
minor dia	ameter	Di	mm	22,00		yield stre	ength	Re	MPa	275
Height ur	ntil teeth center	hzm	mm	5,80		load bea	ring coeff.	klamb.		0,75
Symbol beta	Formula beta=gamma/2				Result 30	Unit °				
He	He=pi/2/tan(beta)*	De/z			6.802	mm				
Hi	Hi=pi/2/tan(beta)*[Di/z			4.988	mm				
Hm	Hm=(He+Hi)/2				5.895	mm				
alpha	alpha=arctan(pi/ta	n(beta)/z	/2		12,20	•				
lr	Ir=r/sin(beta)				1,2	mm				
Irs	Irs=r*(1/sin(beta)-1	1)+S			1,2	mm				
hpe	hpe=He-2*Irs				4,402	mm				
hpi	hpi=Hi-2*Irs				2,588	mm				
he	he=He-Irs-Ir+r				5,002	mm				
hi	hi=Hi-Irs-Ir+r				5,002	mm				
la	la=Hm-2*lrs)/cos(b	oeta)			4,036	mm				
bk	bk=tan(beta)*2*lrs				1,386	mm				
hz	hz=2*hzm				11,60	mm				
hg	hg=hzm-lrs+ha/2				11,60	mm				
Fu	Fu=4*Tmax/(De+D	i)			6154	N				
Fa	Fa=Fu*tan(beta)				3553	N				
Az	Az=la*(De-Di)/2*z				193,7	mm²				
pmax	pmax=(Fva+Fa)/Az	/klambda			66,79	MPa				
plim	plim=Re*fh*fs				330	MPa				
					4 0 4 4	1 1				

A production drawing with ISO 7200 data field contains profile drawings and tables with dimensions. The drawings can be printed or exported to CAD.

HEXAGON PRICELIST 2018-05-01

PRODUCT	EUR
DI1 Version 1.2 O-Ring Seal Software	190
DXF-Manager Version 9.1	383
DXFPLOT V 3.2	123
FED1+ V30.3 Helical Compression Springs incl. spring database, animation, relax., 3D,	695
FED2+ V20.8 Helical Extension Springs incl. spring database, animation, relaxation,	675
FED3+ V19.3 Helical Torsion Springs incl. prod.drawing, animation, 3D, rectang.wire,	480
FED4 Version 7.5 Disk Springs	430
FED5 Version 16.0 Conical Compression Springs	741
FED6 Version 16.6 Nonlinear Cylindrical Compression Springs	634
FED7 Version 13.6 Nonlinear Compression Springs	660
FED8 Version 7.1 Torsion Bar	317
FED9 Version 6.0 Spiral Spring	394
FED10 Version 4.2 Leaf Spring	500
FED11 Version 3.5 Spring Lock and Bushing	210 -
FED12 Version 2.5. Elastomer Compression Spring	220 -
FED13 Version 4.0. Wave Spring Washers	228 -
FED14 Version 2.0. Helical Wave Spring	395 -
FED15 Version 1.4 Leaf Spring (simple)	180 -
FED16 Version 1.1 Constant Force Spring	225 -
FED17 Version 1.5 Magazine Spring	725 -
GEO1 + V7.3 Cross Section Calculation incl. profile database	204 -
GEO2 V3.1 Rotation Bodies	104
GEO2 V3.1 Notation Bodies	205 -
GEO4 V/4.3 Cam Software	205
GEO5 V1.0 Geneva Drive Mechanism Software	203
GEO6 V1.0 Geneva Drive Mechanism Software	210
GP1 V2 1 Goar construction kit software	232
HDCL Managar Varian 0.1	100
I C1 V6 6 Doll Contact Boorings	303
LGT V0.0 Kull-Cultact Deallings	290
CB2 V2.2 Rydrodynamic Plain Journal Dearings	460
SRT V22.9 Dolled Joint Design incl. Flance coloulation	040 750
SR 1+ V22.9 Bolled Joint Design Incl. Flange calculation	730
TOL 1 V12.0 Tolerance Analysis	306
TOLZ VEISION 4.0 TOLETANCE ANALYSIS	495
TDLPASS V4.1 Library for ISO tolerances	107
IRT V0.0 Girder Calculation	757
White Varian 42.0. Outlindrical and Canical Brass Fite	945
WNN Version 12.0 Cylindrical and Conical Press Fils	485
WN2 V 10.1 Involute Splines to DIN 5480	250
WN2+ VT0.1 Involute Splines to DIN 5480 and non-standard involute splines	380
WN3 V 5.4 Parallel Key Joints to Din 6885, ANSI B17.1, Din 6892	245
WNA V 4.7 Involute Splines to ANSI B 92.1	276
WING V 4.7 Involute Splines to ISO 4156 and ANSI B 92.2 M	255
WING V 3.0 Polygon Profiles P3G to DIN 32711	180
WN7 V 3.0 Polygon Profiles P4C to DIN 32712	175
WING V 2.2 Seriation to DIN 5481	195
WN9 V 2.2 Spline Shafts to DIN ISO 14	170
WN10 V 4.2 Involute Splines to DIN 5482	260
WN11 V 1.3 Woodruff Key Joints	240
WN12 V 1.0 Face Splines	256
WNXE V 2.1 Involute Splines - dimensions, graphic, measure	375
WINAN V 2.0 Serration Splines - dimensions, graphic, measure	230
VVSTTVTU.2 Material Database	235
ZAR I + V 20.3 Spur and Helical Gears	7115
ZARZ VO.U Spiral Bevel Gears to Kiingeinberg	/92
ZARS+ V9.0 Cylindrical Worm Gears	620
ZAR4 VO.U NON-CIFCUIAR Spur Gears	1610
ZARO VII./ Manetary Gears	1355
ZAKO V4.U Straight/Helical/Spiral Bevel Gears	585

ZAR7 V1.5 Plus Planetary Gears	1380
ZAR8 V1.4 Ravigneaux Planetary Gears	1950
ZARXP V2.2 Involute Profiles - dimensions, graphic, measure	275
ZAR1W V2.1 Gear Wheel Dimensions, tolerances, measure	450
ZM1.V2.5 Chain Gear Design	326

PACKAGES	EUR
HEXAGON Mechanical Engineering Package (TOL1, ZAR1+, ZAR2, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WN2+, WN3, WST1, SR1+, FED1+, FED2+, FED3+, FED4, ZARXP, TOLPASS, LG1, DXFPLOT, GEO1+, TOL2, GEO2, GEO3, ZM1, WN6, WN7, LG2, FED12, FED13, WN8, WN9, WN11, DI1, FED15, WNXE, GR1)	8,500
HEXAGON Mechanical Engineering Base Package (ZAR1+, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WST1, SR1+, FED1,+, FED2+, FED3+)	4.900,-
HEXAGON Spur Gear Package (ZAR1+ and ZAR5)	1,585
HEXAGON Planetary Gear Package (ZAR1+, ZAR5, ZAR7, ZAR8, GR1)	3,600
HEXAGON Involute Spline Package (WN2+, WN4, WN5, WN10, WNXE)	1,200
HEXAGON Graphic Package (DXF-Manager, HPGL-Manager, DXFPLOT)	741
HEXAGON Helical Spring Package (FED1+, FED2+, FED3+, FED5, FED6, FED7)	2,550
HEXAGON Complete Spring Package (FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED8, FED9, FED10, FED11, FED12, FED13, FED14,, FED15, FED16, FED17)	4,985
HEXAGON Tolerance Package (TOL1, TOL1CON, TOL2, TOLPASS)	945
HEXAGON Complete Package (All Programs)	12,900

Quantity Discount for Individual Licenses

Licenses	2	3	4	5	6	7	8	9	>9
Discount %	25%	27.5%	30%	32.5%	35%	37.5%	40%	42.5%	45%

Network Floating License

Licenses	1	2	3	4	5	6	78	911	>11
Discount/Add.cost	-50%	-20%	0%	10%	15%	20%	25%	30%	35%
(Negative Discount m	anna addit	ional cost	-)						

(Negative Discount means additional cost)

Language Version:

- German and English : all Programs
- French: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9, FED10, FED13, FED14, FED15, TOL1, TOL2.
- Italiano: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9, FED13, FED14, FED17.
- Swedish: FED1+, FED2+, FED3+, FED5, FED6, FED7.
- Portugues: FED1+, FED17
- Spanish: FED1+, FED2+, FED3+, FED17

Updates:

Update prices	EUR
Software Update (software Win32/64 + pdf manual)	40
Software Update (software 64-bit Win + pdf manual)	50

Update Mechanical Engineering Package: 800 EUR, Update Complete Package: 1000 EUR Maintenance contract for free updates: annual fee: 150 EUR + 40 EUR per program

Hexagon Software Network Licenses

Floating License in the time-sharing manner by integrated license manager Individual licenses may not be installed in a network!

Conditions for delivery and payment

General packaging and postage costs for delivery on CD-ROM: EUR 60, (EUR 25 inside Europe) Delivery by Email or download (zip file, manual as pdf files): EUR 0. Conditions of payment: bank transfer in advance with 2% discount, or by credit card (Master, Visa) net.

Key Code

After installation, software has to be released by key code. Key codes will be sent after receipt of payment.

HEXAGON Industriesoftware GmbH

Stiegelstrasse 8	D-73230 Kirchh	eim Tel. +49 702	1 59578,	Fax +49 7021 59986
Kieler Strasse 1A	D-10115 Berl	in Mühlstr.	13 D-73	3272 Neidlingen
Mobile: +49 163 7	342509 E-M	ail: info@hexagon.de	Web	: http://www.hexagon.de