HEXAGON Info 158

by Fritz Ruoss

New Software FED16 for Constant Force Springs

FED16 calculates constant force springs made from spring strip coiled on a mandrel. Constant force springs must not be clamped, constant force at reel up results from the fact that the spring endeavours to return to its original roller shape.

In pre-dimension of FED16, you can input force and maximum deflection, and FED16 calculates the spring dimensions.

• FED16	
	• FED16
thickness t 📴 mm <1S	ISO
width b 60 mm <15	ISO spring load F2 212.5 N
inside diameter Di 65 mm	deflection s max 1583 mm
outside diameter De 80 mm	b/t 75 <
diameter Dn <mark>65 mm <</mark>	Sigmaz / Sigma2 0,618 <
OK Cancel Help Tayt 2 mm / winch C	OK Cancel <u>H</u> elp Text ? mm <> inch Calc

In recalculation of FED16, you enter spring dimensions, and FED16 calculates force, max. deflection, bending stress and life expectation.

FED16 is available now, price of individual license is 225 EUR.

FED1+: Quick Input

New Quick Input of FED1+ integrates most input fields of Edit menu and result screens of View menu altogether in one dialogue window. This eases spring calculation, especially for beginners.

Frocessing	
Display Quick 4	Drawing name Compression Spring Drawing number 346435
Aux. Image BEDDING : Bedding Coefficient	Drawing name 2 Druckfeder
	Line 1
⑦ Prelim.Concept ⑦ De (Da)	Line 2
C Dimensioning C Di C Recalculation C Dm	material 18: EN 10270-3-1.4310-NS ×10CrNi18-8 18-8, 302, 304
Prelim.Concept	surface drawn
spring load F1 655,9 N	tolerance diameter d others $d = 6 \pm 0$ mm
spring load F2 1312 N	tolerance Dm,De,Di others De= 36 +/- 0,5 / -0,2 mm
stroke sh 10 mm	tolerance L0 others 🔽 L0 = 80 +/- 2 / -2,5 mm
	tolerance F1 others F1 = 655,9 +/- 25 / -25 N
	tolerance F2 thers F2 = 1312 +/- 30 / -30 N
	tolerance e1 e1 = 6 mm
	tolerance e2 others e2 = 1,2 mm
end coils lined-up and ground	▼ production compensation by L0 for 1 spring length ▼
Lc = (nt + 0) * d max	type of stress dynamic
production cold coiled (up to d = 17 mm)	required load cycles 0
No. of inactive end colls	stress cycle frequency 1/s 0.5 1/s (f = 30/min)
end coils 1 (upper)	operating temperature T 80 °C <
	seat coefficient nue
coiling direction right-hand	Radial load FQ
✓ spring shot-blasted	external mass m 0.5
	collision velocity v St 0 m/s <
<u> </u>	Cancel Help mm <> inch Calc

Only special calculations such as individual input of material properties, dimensioning material, dimensioning installation space, recalculation load-deflection line, or load spectrum has to be chosen from Edit menu. A high-resolution display is helpful when using new Quick input, then you can place dialogue window and graphic window side by side.

Result screens with drawings, diagrams and tables as well as auxiliary images can be selected under "Display" and "Aux.Image". If you configure help level 2, Quick input dialogue window is opened directly after program start.

FED1+, 5, 6, 7: Warning P/Di > 0.7

If coil pitch P is larger than 70% of inner coil diameter Di, this can complicate or forbid spring production. In this case a new warning appears. If dimensions cannot be changed, ask your spring manufacturer if spring can be produced without problem.

FED1+: Spring rate tolerance

Alternative tolerance for the spring rate R has been added in FED1+. You can input upper and lower tolerance of R, if required. If tolerances of spring loads F1 or F2 should be suppressed in this case, set it to 0.

FED2+, FED3+: Input spring rate at Dimensioning and Pre-Dimensioning

Same as in FED1+, alternative input of spring rate has been added in extension spring software FED2+ and torsion spring software FED3+. At "Edit->Calculation method" you can configure if input of R should recalculate F1 or F2 or sh (T1 or T2 or alphah in FED3+).

FED1+,2+, 5, 6, 7: Table in relaxation-time diagram

Tables in relaxation-time diagrams Rx%=f(t) and RxF2=f(t) were printed with differing values compared with printout. Table with relaxation for operating temperature and min and max temperature (input at Edit->production drawing) was corrected and relaxation data for spring length L1 have been added. In Quick4 view of FED1+ and FED2+, relaxation diagram RxF2=f(t) has been added.

FED2+: Consider bending radius of loops

- FED2+	Extension Spring Software	
	wire shape	round
	Warnings	Display all warnings
	which coil diameter should be tolerated ?	De
	Recalculation: L0, LK, LH	const LH; var L0, LK
	Calculation method at input of R	F1 and F2 unchanged, sh variable
	Prelim.Concept, Dimensioning, Recalculation	2 Spring Load and deflection
	Units metric/imperial	metric (mm, N, MPa, Nmm, °C)
	Goodman diagram tauoz	tauoz = tauoz (Goodman diagram)
		▼ q bending radius ? r / d = 1.8
		🔽 display Rm min/max, tau min/max ?
		tauz/tau at calculation d min 1.15 <
		Prelim.Concept Dm/d 9 <
	OK	Cancel Help Text Aux. Image

Until now, stress correction factor q for tension in the loop was calculated from loop radius Di/2. Now you can additionally consider the bending radius of the loop by input of ratio bending radius / wire diameter to calculate the stress correction factor q for bending stress. The higher q value will be considered. Loop stress can become higher as calculated until now, if ratio of bending radius to wire diameter is less than 2.

SR1 - calculation option washer dwa=dw+1.6hs

If this option is set, SR1 calculates bearing area of the washer to next clamping plate according to VDI 2230 as dwa=dw+1.6hs. Until now, it was not considered that external diameter of the washer can be less than dwa, if external diameter of washer is relative small and thickness of the washer is relative large. In this case, surface pressure was calculated too low. Now, dwa was limited to external diameter of the washer.

SR1 – calculation option elasticity: deformation sleeve (VDI 2230-1986)

After implementing calculation of elasticity with deformation cones instead of deformation sleeves, it has been found now that since then the old calculation with deformation sleeves, if configured, required two computing procedures to get the result. Bug was fixed now.

GEO4 – Input Cam Curve

Select 🗙		
Select curve type	GEO4 cam	
input formula rw=f(phi) ellipse sine rw=rw0+A*sin(phi) sine-linear coordinates Polygon polynomial function input <=50 Points on cam -> polynomial function eccentric element input <=1000 Points on cam -> Polyline	r (phi) = db/2 + sh * (sir² (180/w * phi)) base diameter db stroke sh 3 operating angle w 120	mm < mm < * <
OK Cancel <u>H</u> elp Text Aux. Image	OK Cancel mm <> inch C	alc

Parameters stroke, operating angle and base diameter of the classic cam curve $r (phi) = c + a * sin^2$ (b*phi) can now be entered directly instead of typing the formula. This saves time at input as well as at calculation and animation.

To optimize the generated cam geometry you can export and re-import cam curve as DXF. Or optimize in CAD and then import polyline in GEO4.

ZAR5: bearing life if load spectrum

Bearing life of the planetary roller bearings was calculated from nominal load. Now, ZAR5 calculates average bearing load if a load spectrum was defined: $Fm = ((F_1^3 * U_1 + F_2^3 * U_2 + ... + Fn^3 * Un) / U)^{1/3}$

ZAR5 – Planet carrier with coupling shaft

SZAR5 planet carrier		- 🗆 ×
HC + IC dshS dc dshS dC dc dshP dshP	shaft diameter of the pinion sun wheel dshS 41 m shaft diameter planet wheel dshP 45 m height planet carrier hC 75 m Form planet carrier 1 ▼ Coupling shaft planet carrier shaft diameter planet carrier dC 82 m length coupling shaft planet carrier IC 66 m	m < m < m < ? m <
OK Cancel <u>H</u> elp Text	mm <> inch	

At "STL->Carrier" and "CAD->Carrier", planet carrier with coupling shaft can be generated and printed. CAD and STL files can be used for creating planet gear models with 3D printer, or as draft for CAD planet carrier drawing.

ZAR5 – Taper roller bearings and cylinder roller bearing NJ in X and O configuration

Taper roller bearings in O configuration are now drawn aligned with the carrier plane. And if two cylinder roller bearings of type NJ are selected, you can choose X and O configuration for the drawing.

WN2+ Buttons e2min and e2max interchanged

At "Edit->Dimensions Tooth" you can input (WN2+ only) tooth dimensions with gap width e2min and e2max of the internal spline and tooth thickness s1min and s1max of the external spline. Unfortunately, buttons e2min and e2max were interchanged and had to be exchanged now. e2max belongs to M2min and e2min belongs to M2max.

Automatic text window size

Same as graphic window size and dialogue window, size of text window for printout can be set to "automatic".

🙀 WN2+ Configuration		
Directories Graphics CAD Colour Printer	Printout Settings external	Drawing
Select linetype C lines ==== ***** C lines	date © DD.MM.YYYYY O MM/DD/YYYY	Angle © 15.1234° © 15° 7' 26''
C compressed, without space lines		text printout with header
Font Courier New h = 10 Style: 0		C header only page 1
header space lines	Text window	in 700
Max. lines per page for printer 66	top 40	height 958
Screen	Text (vindow Auto
Show output code dialogue box		Help
OK	Cancel <u>S</u> ave	Export Import

IGES problem with large file name

IGES header contains the file name. If this is too long, header wrote over border, thus IGES file caused error. Now the file name in the IGES header is shortened to 30 characters.

Problem with standard network printer

A customer had problems with printer configuration. Instead of the printer dialog box he got an error message "There is no default printer currently selected".

We found now that this problem can occur if the default printer is a network printer that was externally configured. In this case you must install the default printer once again from your workstation and use local printer drivers if possible. Or simply define a local printer or pdf printer as default printer.

STL files for 3D printer

STL files generated by our calculation programs are surface shells, not closed volumes. External surface is drawn in mathematical positive direction and empty space in negative direction. Not every 3D printer software can handle this type of STL file. We recommend Cura software of Ultimaker (download free).

VDFI Spring seminar

Association of German spring manufacturers VDFI arranges a spring calculation seminar on October 20 in Aalen, hold by Prof. Dr.-Ing. Tillmann Körner of HEXAGON Ingenieurbüro.

PRICELIST 2016-09-01

PRODUCT	EUR
DI1 Version 1.2 O-Ring Seal Software	190,-
DXF-Manager Version 9.0	383
DXFPLOT V 3.2	123 -
FED1+ V29.1 Helical Compression Springs incl. spring database, animation, relax_3D	695 -
FED2+ V20.0 Helical Extension Springs incl. spring database animation relaxation	675 -
FED3+ V18 7 Helical Torsion Springs incl. prod drawing animation 3D rectand wire	480 -
FED4 Version 7.2 Disk Springs	430 -
FED5 Version 15.2 Conical Compression Springs	7/1
FED6 Version 15.2 Conical Compression Springs	624
FEDO Version 13.9 Nonlinear Cymunical Compression Springs	034,-
FED7 Version 12.7 Norminear Compression Springs	000,-
FEDO Version 0.0 Optical Optical	317,-
FED9 Version 6.0 Spiral Spring	394,-
FED10 Version 3.3 Leaf Spring (complex)	500,-
FED11 Version 3.3 Spring Lock and Bushing	210,-
FED12 Version 2.4 Elastomere Compression Spring	220,-
FED13 Version 3.9 Wave Spring Washers	185,-
FED14 Version 1.4 Helical Wave Spring	395,-
FED15 Version 1.3 Leaf Spring (simple)	180,-
FED16 Version 1.0 Constant Force Spring	225,-
GEO1+ V6.1 Cross Section Calculation incl. profile database	294
GEO2 V2.6 Rotation Bodies	194,-
GEO3 V3.3 Hertzian Pressure	205,-
GEO4 V4.1 Cam Software	265,-
HPGL-Manager Version 9.0	383
LG1 V6.4 Roll-Contact Bearings	296
I G2 V2 2 Hydrodynamic Plain Journal Bearings	460 -
SR1 V21 7 Bolted Joint Design	640 -
SR1+ V21.7 Bolted Joint Design incl. Flange calculation	750 -
TOL 1 V11 8 Tolerance Analysis	506 -
TOLI CON V/1.5 Conversion Program for TOL 1	281 -
TOLICON VI.3 Conversion Program of TOLI	201,-
TOLZ VEISION 3.5 TOLEIANCE ANALYSIS	495,-
TOLFASS V4.1 Libitary for ISO tolerances	757
N/I 4 + V/40 0 Shoft Colouidion incl. Boll contact Destings	757,-
WL1+ V19.8 Shalt Calculation Incl. Roll-contact Bearings	945,-
WNT Version 11.6 Cylindrical and Conical Press Fits	485,-
WN2 V 9.6 Involute Splines to DIN 5480	250,-
WN2+ V 9.6 Involute Splines to DIN 5480 and non-standard involute splines	380,-
WN3 V 5.3 Parallel Key Joints to DIN 6885, ANSI B17.1, DIN 6892	245,-
WN4 V 4.5 Involute Splines to ANSI B 92.1	276,-
WN5 V 4.5 Involute Splines to ISO 4156 and ANSI B 92.2 M	255,-
WN6 V 3.0 Polygon Profiles P3G to DIN 32711	180,-
WN7 V 3.0 Polygon Profiles P4C to DIN 32712	175,-
WN8 V 2.2 Serration to DIN 5481	195,-
WN9 V 2.2 Spline Shafts to DIN ISO 14	170,-
WN10 V 4.0 Involute Splines to DIN 5482	260,-
WN11 V 1.3 Woodruff Key Joints	240,-
WNXE V 2.0 Involute Splines - dimensions, graphic, measure	375,-
WNXK V 2.0 Serration Splines - dimensions, graphic, measure	230,-
WST1 V 10.0 Material Database	235
ZAR1+ V 25.3 Spur and Helical Gears	1115
ZAR2 V7.7 Spiral Bevel Gears to Klingelnberg	792 -
ZAR3 V8.9 Worm Gears	404 -
ZAR4 V4 2 Non-circular Spur Gears	1610 -
ZAR5 V10.8 Planetary Gearings	1355 -
ZAR6 V/3 7 Straight/Helical/Spiral Revel Gears	595
ZANO VO. / Otralyny i leitoal/opital Devel Geals	000,-
ZARAF V2.1 Involute Fromes - unitensions, graphic, measure	2/3,-
ZAK IVV VI./ Gear Wheel Dimensions, tolerances, measure	450,-
ZIVIT. V Z.4 Chain Gear Design	326,-

PACKAGES	EUR
HEXAGON Mechanical Engineering Package (TOL1, ZAR1+, ZAR2, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WN2+, WN3, WST1, SR1+, FED1+, FED2+, FED3+, FED4, ZARXP, TOLPASS, LG1, DXFPLOT, GEO1+, TOL2, TOL1CON, GEO2, GEO3, ZM1, WN6, WN7, LG2, FED12, FED13, WN8, WN9, WN11, DI1, FED15, WNXE)	8,500
HEXAGON Mechanical Engineering Base Package (ZAR1+, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WST1, SR1+, FED1,+, FED2+, FED3+)	4.900,-
HEXAGON Spur Gear Bundle (ZAR1+ and ZAR5)	1,585
HEXAGON Involute Spline Package (WN2+, WN4, WN5, WN10, WNXE)	1,200
HEXAGON Graphic Package (DXF-Manager, HPGL-Manager, DXFPLOT)	741
HEXAGON Helical Spring Package (FED1+, FED2+, FED3+, FED5, FED6, FED7)	2,550
HEXAGON Tolerance Package (TOL1, TOL1CON, TOL2, TOLPASS)	945
HEXAGON Complete Package (All Programs of Engineering Package, Graphics Package, Tolerance Package, Helical Spring Package, TR1, FED8, FED9, FED10, ZAR4, GEO4, WN4, WN5, FED11,WN10, ZAR1W, FED14, WNXK, FED16)	11,500

Quantity Discount for Individual Licenses

Licenses	2	3	4	5	6	7	8	9	>9
Discount %	25%	27.5%	30%	32.5%	35%	37.5%	40%	42.5%	45%

Network Floating License

Licenses	1	2	3	4	5	6	78	911	>11
Discount/Add.cost	-50%	-20%	0%	10%	15%	20%	25%	30%	35%
(Nogetive Discount mappe additional cost)									

(Negative Discount means additional cost)

Language Version:

- German and English : all Programs
- French: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9, FED10, FED14, TOL1, TOL2.
- Italiano: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9.
- Swedish: FED1+, FED2+, FED3+, FED5, FED6, FED7.
- Portugues: FED1+
- Spanish: FED1+, FED2+, FED3+

Updates:

Update prices	EUR
Software Update (software + pdf manual)	40,-
Software Update (software 64-bit Win + pdf manual)	50,-

Update Mechanical Engineering Package: 800 EUR, Update Complete Package: 1000 EUR

Maintenance contract for free updates: annual fee: 150 EUR + 40 EUR per program

Upgrades

For upgrades to network licenses or plus versions or software bundles, upgraded licenses are credited 75%.

Hexagon Software Network Licenses

Floating License in the time-sharing manner by integrated license manager Individual licenses may not be installed in a network!

Conditions for delivery and payment

General packaging and postage costs are EUR 60, (EUR 25 inside Europe) Delivery by Email (program packed, manual as pdf files): EUR 0. Conditions of payment: bank transfer in advance with 2% discount, or by credit card (Master, Visa) net.

Key Code

After installation, software has to be released by key code. Key codes will be sent after receipt of payment.

HEXAGON Industriesoftware GmbH