HEXAGON Info 156

by Fritz Ruoss

WNXK - New Software for Serration Spline Design

WNXK is similar than our WNXE software, with the difference that WNXE calculates involute splines and WNXK calculates serration splines. WNXK uses equivalent designations as for involute splines: module, tooth height coefficients, profile shift. This eases the design of self-defined serrations.

You can either input dimensions of external serration and internal serration or dimensions of external serration together with clearance and backlash, or dimensions of internal serration together with clearance and backlash.

😿 WNXK Serration			<u>-0×</u>
Pressure angle alpha G gap angle gammae G gap angle gammai	0 * • • • • • • • • • • • • • • • • • •	mal module mn 0.41934 mm Normal Pitch Pn 60,57137 1/in	
Number of teeth z 31	d = 13,000 mm		
	C 1 (external spline) + c 0	 1+2 C 2 (interpreted) 	rnal spline) + c
Tooth depth coefficient C he/mn major diameter C de Root fillet radius C rf	ha1/mn 1.15906 < ce/mn da1 13.91 mm < ce	0.3283 < hf2/mn 1.38835 0.1376 mm df2 14.1854 ff2 0,10064	mm mm <
Tooth depth coefficient C hi/mn minor diameter C di Root fillet radius C rf	hf1/mn 1.14176 ci/mn df1 11.9803 mm ci nf1 0.10064 mm <	0.3692 < ha2/mn 0.87162 0.1548 mm da2 12.29	mm <
Gen.addend.modif.coeff.	xe1 0.07347 < cp/mn sn1 0.623 mm < cp IR1 14.012 mm < DM 0.75	0.1144 < xe2 0.02560 0.0479 mm c en2 0.671 mm < ? c MB2 11.879	<pre></pre>
OK Cancel <u>E</u>	lelp Aux. Image	n c/mn	m <> in Calc

True-scale drawings of the serration profiles can be generated as DXF or IGES file. WNXK and WNXE are useful for generating any tooth profile via wire eroding or 3D printer, and for manufacturers of broaches and gauges.

FED1+,2+,3+,5,6,7: Surface drawn/rolled/ground/shaved

Surface of cold-formed spring wire is is drawn, and surface of hot-formed springs is rolled. Surface of hot-formed springs can also be tipless ground or shaved. Nowadays, also cold-formed wire with shaved surface is available. Input of surface is just for information and has no influence on calculation results. Fatigue strength of shaved or ground wire is higher than for raw wire, but it is at yours to select another material from database with shaved surface. Oteva 70 SC (VD-SiCr) is available shaved and raw.

If you select drawn surface for hot-rolled wire or rolled or ground surface for cold-formed springs, FED software corrects your input.

Shaved surface was not listed on printouts and drawings until now. This has been changed, shaved surface is listed and marked in the production drawings, if marked.

FED1+: Pitch m and swelling delta De of coil diameter under load

Because of queries about this theme in the last info letter, it has to be clarified: Nothing has changed in FED1+. EN 13906 was modified.

In FED1+ there are 2 calculations of coil diameter Dec: "Dec" according to EN standard, and "De" in the Quick3 and Quick4 tables, calculated by our proprietary formulas. According to this formulas, swelled diameter is calculated from wire length: D = L/(pi*nt), under consideration of lined-up end coils. These calculation allows calculation of swelled coil diameter not only for block length, but also for any spring length.

FED1+ Compression Spring Software - 0.fed File Edit View CAD Database Document OLE Help										
L[mm] F[N] tau[MPa] s[mm] tau/tauz tau/Rm De										
L0: 120,00						36,00	15,54			
L1: 108,00	F1: 192,2	tauk1: 287	s1: 12,00	0,24	0,14	36,14	13,14			
L2: 94,00	F2: 416,4	tauk2: 621	s2: 26,00	0,53	0,30	36,28	10,34			
Ln: 48,20	Fn: 1150	tau n:1464	sn: 71,81	1,46	0,82	36,56	1,18			
Lc: 42,32	Fc: 1244	tau c:1584	sc: 77,69	1,58	0,89	36,57	0,00			

FED4,9,10,13,14,15: Round wire 1.4310 and 1.4568 added in material database

Strength properties of strip steel and round wire differ, strength values of round wire as function of wire diameter are higher than strength values of strip steel as function of strip thickness. Values of round wire have been added to the strip material database. To be used for wave springs of square or round wire section, material properties of 1.4310 (18-8) and 1.4568 (17-7 PH) spring wire according to EN 10270-2 have been added to fed9wst.dbf. If you calculate a spring made of 1.4310 or 1.4568 with square section, you can select the material with higher strength properties according to EN 10270-3 instead of EN 10151.

FED3+: E Module for FD, TD, VD (EN 10270-2)

Modulus of elasticity of FD, TD, VD (FDC, FDCrV, FDSiCr, TDC, TDVrV, TDSiCr, VDC, VDCrV, VDSiCr) according to EN 10270-2 was modified in the fedwst.dbf material database from 200,000 into 206,000 MPa. By this modification, spring moment of torsion springs in FED3 increase 3%. For compression springs, this modification has no influence, because shear module G instead of E module is used for all types of compression springs.

FED1+,2+,3+,5,6,7: Indicate load cycles required

At "Edit->Application" you can now indicate number of load cycles required. If calculated number of load cycles is lower than required number of load cycles, you get an error message.

FED1+ Application	FED1+ production drawing
FED 1+ Application type of stress • static or quasistatic • dynamic required load cycles 10E6 0 11/5 (f = 6/min) operating temperature T 20 °C seat coefficient nue 1 2 1 0.707 0.5 Radial load FQ N external mass m 0 kg <	FED1 + production drawing Buring of spring ends C not C inside Outside C free C inside and outside Isola and outside Isola display Setting length Ls = 50.31 Ls = Lc Isolay Setting length Ls = Lc Isolay Ld, P, m Isolay Ld, P, m Isolay Ld, P, m Isolay Ld, P, n Isolay Ld, P, n Isolay Interme load cycles Isolay Interme load cycles Isolay Fin Range of working temperature from Isolay Interme load cycles Isolay Surface protection
OK Cancel Aux. Image Help Text Calc	Additional Indications Drawing with mandrel and bore C d mandrel bedding C d mandrel = P bore bedding bore bedding C d bore > 37.52 C d bore > OK Cancel Help

If you check "display Lifetime load cycles" at "Edit->Production drawing", required number of load cycles and calculated number of load cycles are listed in the production drawings.

FED7: Coil table in production drawing with E1, E2

End coils E1 and E2 have been added to the table with coil sections.

WN8: Tooth profile drawing improved

Drawing of root fillet of the internal serration spline was improved, and inside diameter of the internal serration profile is drawn as arc now (instead of straight line). At self-defined profiles with low number of teeth you can see the difference.

ZAR1+, ZAR5: Diagrams Safety and Lifetime

Diagrams for safety and life expectation caused errors and even program crash if you clicked this diagrams for zero-speed gears (torque only). The bug was fixed now. Life expectation cannot be calculated if n = 0. If you have ZAR1+ version 25.0 and ZAR5 V10.0, you can request a free update to ZAR1+ V 25.0.1 and ZAR5 V10.0.1.

ZAR1+, ZAR5: Hint/Warning if ring gear with positive profile shift

Profile shift of external gears is normally $x \ge 0$ and for internal gears $x \le 0$. In ZAR software, number of teeth, diameters and profile shift is negative for internal gears (ring gears) according to DIN 3960. Some other standards use always positive signs for both, external and internal gears. For number of teeth and diameters it is no problem to recognize the difference, but profile shift may be both, positive and negative. ZAR1+ and ZAR5 now give a warning, if profile shift of a ring gear is positive. To be sure that the sign is correct, compare tooth thickness or gap width or dimension between pins or balls, else set xH = -xH.

SR1+: "Washer dwa=dw+1.6hs" as option

Whether surface pressure of washers should be calculated according to formula (193) of VDI 2230-1:2015 or not, can now be configured at "Edit->Calculation method". "dwa=dw+1.6hs" defines a cone angle of ArcTan(0.8)=38.7°. SR1+ recognizes a clamping plate as washer, if thickness L < 0.5 * bore diameter Di. This formula is applied on the first clamping plate. If TBJ with nut, washer formula is applied on the last clamping plate, too.

In earlier versions, option "washer dwa=dw+1.6hs" was always applied.

C SR1+ calculation base									
C VDI 2230 : 1986 C Elasticity C VDI 2230 : 1986 C deformation sleeve (VDI 2230-1986) C VDI 2230-1:2015 C deformation cone (VDI 2230-1:2015)	p max C deformation sleeve C deformation cone								
TTJ -> TBJ (phiD, dw nut)	🔽 washer dwa=dw+1.6hs								
D'A max = 10 dw									
🥅 creep at FKR min									
thread length engaged to Dose	MA pre								
calc.min.thread length engag.for FSmax (=FMzul+FSA)	FA pre								
Tolerances for friction coefficients ?	F pre								
tolerances d2, d3 for FM, MA ? max (d2=d2max, d3=d3max) Multi-bolted joint (FA,FQ,FKR = f (MV) ? calculation FA (Mb) flange No Flange VD12230-2 (34) C VD12230-2 (43): FAma	x=4"Mb/(ns"dt)								
🔲 tightening angle incl. torsion bolt ?									
TTJ: thread engagement mgeo and mtr reduced by bolt length tolerance									
Units metric/imperial metric (mm, N, MPa, Nmm, *C)									
OK Cancel <u>H</u> elp Text	Calc								

SR1+: Input of required residual clamping force

Required residual clamping force must be higher than calculated min values for radial load and eccentric load, and smaller than minimum clamp load at FAmax (FKRmin=max). If a negative value will be calculated for FKRmin (max), FA is too large and red-lighted now. If FQ/ μ or FKreq,ecc. larger than max, text is printed red, and buttons disappear.

🕻 SR1+ load			
Axial load FA FA max 35000 N FA min 0 N stati	transverse k FQ 450 μ=0,15 FKmin=FQ/μ	N thread length en - mzu (chamfer) N m tr = 16 · 4 = =3000 N	gaged m gesvorh = 16,0 4 mm < 12 ?
FA> clamp.plate 3 (n factor = 4,0, de= 150,0, di= 23,0 mm)] n1 0,30	er medium upper
loss of preload by embedding	VDI 2230-1:2015 - suggestions for ste	upp eel materials	er medium lower
amount of embedding 0,05 mm	0,019 Rz < 10 μm 0,005 0,0245 10 <= Rz < 40 μm	 VDI 2230 (Release 1986) Vademecum (interface area g Vademecum (interface area l 	grinded) athed)
FK regd.)/μ = 450/0,15 = 3000 N	Calc Aux. Images	OK Cancel
N	ax = -4449 N (FM max = FM)	N <> lbf	Help Text

SR1+: Deformation cone dimensions if several clamping plates

D'A, the "substitutional outside diameter of the basic solid" is unclear in VDI 2230 for several clamping plates. Until now, SR1+ used D'A = Demax, the clamping plate with the largest outside diameter. This was changed now into D'A = sum(Dei*Li)/LK, so that the cone angle no longer will be extremely enlarged because of only one thin clamping sheet.

SR1+: Calculation Option "D'A max = 10 dw"

Figure 11 in VDI 2230 pretends that the curves for calculation of phiD proceeed asymptotic, and that a higher value than phiD= 35° cannot be achieved. But this is not the case, cone angle increases even for y > 9. Diagram below shows the correct curve for $\beta L = 4,82$:

There is no limit of 9 for DA⁷/dw, y can be much higher for bolted joints in large plates. Diagram below shows the same function until y = 100:

x-axis is y according to VDI 2230, and y axis is tan(phiD). For tan(phi)=1, cone angle phiD is 45°. In SR1+, you can now limit "D'A" to a maximum of 10*dw. (Edit -> Calculation Method). This prevents the software to calculate unrealistic large cone angle phiD or phiE and limiting outside diameter "DA,Gr".

SR1+: Creep Safety SpKr

Permissible surface pressure pG according to VDI 2230-1:2015 Table A9 of most materials is higher than tensile strength and much higher than yield point. Clamping until pG may cause deformation on the clamping plate. If not immediately, then after hours or days. Because of the deformation, clamp load decreases. And surface pressure decreases, until creeping ends. In this state, one could measure the remaining clamp load (FK) and surface pressure (pGKr). SR1 clamping plate material databases got 2 additional fields: PGKR with permissible surface pressure without creeping, and TMAX with permissible operating temperature. By default, PGKR is set Rp0.2 * 0.8 (80% yield point). If operating temperature higher than TMAX (if TMAX>0), SR1 generates an error message. If TMAX set 0, it is not considered.

🚺 material for clamp.plate / n	ut (h:\ap	ps\tp\sr1dis	k\d\mat_p	_2.dbf)						_ [J×
<u>File E</u> dit <u>V</u> iew <u>H</u> elp											
	≪ % ୯	<u>S</u> earch	Search	n <u>N</u> ext 11	/40	OK	Cancel				
MATERIAL	RE	RM	PG	BETA_M	E_MODUL	ALPHA_T	INFO	TAUB_RM	PGKR	TMAX	
▶ 0.7050 GJS-500	350	500	750	0,9	169000	1,25E-5	VDI2230:2015	0,9	280	0	1
0.7060 GJS-600	420	600	900	0,9	174000	1,25E-5	VDI2230:2015	0,9	336	0	1
1.0036 S235 JRG1	230	340	490	0,577	205000	1,11E-5	VDI2230:2015	0,85	184	0]
1.0050 E295	270	470	710	0,577	205000	1,11E-5	VDI2230:2015	0,8	216	0]
1.0553 S355 JO	325	490	760	0,577	205000	1,26E-5	VDI2230:2015	0,8	260	0]
1.0972 S315MC	315	390	540	0,577	205000	1,26E-5	VDI2230:2015	1,08	252	0	
1.0980 S420MC	420	480	670	0,577	205000	1,25E-5	VDI2230:2015	0,77	336	0] 🗖
1.1192 Cq 45 (V)	430	700	770	0,577	205000	1,11E-5	VDI2230:2015	0,657	344	0	1
1.4301 ×5CrNi18-10	210	520	630	0,7	200000	1,6E-5	VDI2230:2015	0,79	168	0	1
1.4303×5CrNi18-12	220	500	630	0,7	200000	1,6E-5	VDI2230:2015	0,8	176	0	1
1.4307 X2CrNi18-9	200	520	630	0,7	200000	1,6E-5	VDI2230:2015	0,79	160	0	1
1.4401 X5CrNiMo17-12-2	220	530	630	0,7	200000	1,6E-5	VDI2230:2015	0,77	176	0]

Technically, "SpKr = safety against creeping" is not correct. Creeping is allowed, but must stop at least at residual clamp load FKRmin:

SpKr = pGKr / pBKrmax with pBKrmax = FKRmin/Amin of clamping plate

SR1+ calculation base				
calculation base FM, MA C VDI 2230: 1986 PVDI 2230-1:2015 PVDI 2230-1:2015	Elasticity C deformation sleeve (VDI 2230-19 deformation cone (VDI 2230-1-21 TI -> TBJ (phiD, dw nut)	186) p max C deformat (© deformat washer du	tion sleeve tion cone wa=dw+1.6hs	SR1+ Bolted Joint I File Edx Yiew CAD I MA max/min/nor alpha max/min
creep at FKR min thread length engaged to Dose calc.min.thread length engag.for F3 Tolerances for friction coefficients tolerances 2, d3	D'A max = 10 dw smax (=FMzul+FSA) for FM, MA ? max (d2=d2max, d3=c	☐ MA pre ☐ FA pre ☐ F pre 3max)	J	FACTORS OF S safety against lo safety yield point safety plate suff safety against sh safety against sh safety bolt bearin safety creep at F
Multi-bolted joint (FA,	FQ,FKR = f (MV) ? Calculation FA C Dose, VD C VD12230-	4 (Mb) flange 12230-2 (34) 2 (43): FAmax=4*Mb/(ns*dt	;	
tightening angle incl. torsion bolt ?				
TTJ: thread engagement mgeo ar	d mtr reduced by bolt length tolerance			
	Cancel Help Text		Calc	

C SR1+ Bolted Joint Design to VDI	2230 - 0.sr1				_ 🗆 🗵
<u>File Edit View CAD Database Docu</u>	ment <u>O</u> LE <u>H</u> elp				
IVIA max/min/nomINm	382,37239,07310	/	μιr	0,150	
alpha max/min deg	30,84 / 19,28		K	0,157	
FACTORS OF SAFETY (T=	:20 60 °C)				
safety against loosening		FMzul	/FMmax,req		1,30
safety yield point red.B		SF=R	p/Sig.redB		1,09
safety plate surface pressur	e	Sp=p0	3/pBmax		1,12
safety against slipping due	:o FQ	SG=F	KRmin/FKQ	req	1,58
safety against shearing		SA=A	tau*tauB/FQ		30,32
safety bolt bearing stress		SL=h*	d*Re/FQ		3,37
safety creep at FKRmin	pGkr/pBkrm	ax	0,74		

Mark "creep at FKRmin" at "Edit -> Calculation method", then "creep safety SpKr" will be calculated.

Many thanks to Mr. Sonnleitner of Siemens AG for proposals and documents. Siemens recalculates safety for creep-proof bolted joints since years. Maybe creep safety someday will be integrated into VDI 2230, and permissible surface pressure "pGKr" added in material property tables.

SR1+ Example Printout Creepage

If you mark "creep at FKRmin" at "Edit->Calculation Method", printout includes an additional table with creep stress and creep safety for each clamping plate.

CLA	MPED PLATES	(DIMENSION	S)									
i 	de [mm]	di [mm]	l [mm	ι]	x [mm]	dwo [mm]	dwu [mm]					
1	40,00	22,00	32,0	0	32,00	28,2	40,0					
2	80,00	21,00	4,0	0	36,00	40,0	43,6					
3	150,00	23,00	4,0	0	40,00	43,6	39,7					
4	80,00	21,00	4,0	0	44,00	39,7	35,9					
5	80,00	23,00	4,0	0	48,00	35,9	32,0					
6	100,00	21,00	4,0	0	52,00	32,0	28,2					
CLA	CLAMPED PLATES (MATERIAL AND LOAD)											
i 	material	E []	 MPa] 	pG	pBmax	d.[mm/N]	aT[1/K]					
1	1.4303 X5Cr	Ni18 20	0000	630	498	0,241E-6	0,0165E-3					
2	1.4303 X5Cr	Ni18 20	0000	630	139	0,0194E-	6 0,0165E-3					
3	AlMgSi0,7 F	26 (7	0000	172	148	0,0606E-	6 0,024E-3					
4	1.4303 X5Cr	Ni18 20	0000	630	204	0,0259E-	6 0,0165E-3					
5	1.4303 X5Cr	Ni18 20	0000	630	311	0,0413E-	6 0,0165E-3					
6	1.0577 S355	5J2 21	0000	510	437	0,0530E-	6 0,0115E-3					
CLA	MPED PLATES	(CREEP)										
i	NAME			pGKr	pBKRma	x Spk	r Tmax					
1	Dehnhuelse			148	19	4 0,7	6 0					
2	Beilagplatt	.e_1		148	5	4 2,7	3 0					
3	Traverse			172	5	8 2,9	9 80					
4	Beilageplat	te_2		148	8	0 1,8	6 0					
5	Var_Beilage	en		148	12	1 1,2	2 0					
6	WK-Konsole			284	17	1 1,6	7 0					

pGKR: limiting creep pressure (from database)

pBKrmax: surface pressure for FKR min.

SpKr: creep safety at FKR min

dwo: outside diameter of deformation cone, upper surface of clamping plate

dwu: outside diameter of deformation cone, bottom surface of clamping plate

pG: limiting surface pressure (from database)

pBmax: surface pressure for FSmax

SR1+: Warning pmax > Re !

According to VDI 2230-1:2015 (table A9), permissible surface pressure pG is higher than tensile strength "Rm" and much higher than yield point "Rp0.2". This is ok for multi-axial stress condition. If the clamping plate is a thin sleeve, surface pressure higher than yield point is not allowed. SR1+ now displays a warning "pmax > Re" if deformation body is identical with geometrical dimensions and surface pressure is higher than yield point.

Example: Highest flank pressure occurs at the first clamping plate (434 Mpa). But more problematic is the surface stress at the third clamping plate (sleeve), because pBmax = 386 Mpa is higher than Re = 340 Mpa.

All Programs: Database with new possibility to input record number directly

As alternative to select record via mouse or cursor keys or search function, you can enter record number directly now. Record number is displayed in an edit field now. If you input record number there, cursor jumps to the record. This accelerates input, if you have the record numbers of often used materials in mind, for example.

Ei	fedwst.dbf material le ⊻iew <u>H</u> elp							
	H	► ►I <u>S</u> earch	Search <u>N</u> ext 49 /	'94 OK Ca	ncel			
	NAME1	NAME2	NAME3	NAME4	G	E	DICHTE	RMO 🔺
	17-7 PH	ASTM A 313 (631), 1.4588	Stainless Steel Wire		75800	203000	7,9	2311
	Hastelloy C-4	NiCr16Mo16FeCo	2.4610	ASTM B619	81200	212400	8,64	140
	Monel 400	NiCu31FeMn	2.4360	ASTM B164	65300	173000	8,8	851
	Titanium Grade 1	Ti99	3.7025	ASTM B348	40000	110000	4,5	50
	INCONEL X-750 ST+3HT	NiCr15Fe7TiAl	Sandvik Sanicro 75X1	2.4669	81500	212000	8,28	801
Г	INCONEL X-750 T.No.1	NiCr15Fe7TiAl	Sandvik Sanicro 75×1	2.4669	85000	220000	8,28	901
	OTEVA 70 SC shaved	VD-SiCr	shaved	oil tempered	79500	206000	7,85	208
Г	OTEVA 70 SC n.shaved	VD-SiCr	not shaved	oil tempered	79500	206000	7,85	208
Г	OTEVA 75 SC shaved VD-SiCrV s		shaved oil tempered		79500	206000	7,85	215
Г								•
Ľ								► //.

Software orders Update

Because order form at www.hexagon.de/order_e.htm no longer generates emails, we created substitute solutions Each software got a new menu item "Help->Update" to order an update for itself. And second we developed a new "order" software for download at <u>www.hexagon.de</u>.

New Order software replaces online order form

Against the trend, new order software no longer runs in the "cloud", but has to be installed on the individual computer or network under Windows. The new order software not only replaces the old order form, you can also administrate your licenses there. And credit card data are coded safe by self-developed coding procedure before sent by email.

At "My Licenses" you can enter your programs with license number, current version and user information. "Order updates" button generates an update order for all of your licenses in the right text field. In the text field you can delete non-required updates, add and modify text. Then you can send text field by email, or copy via clipboard or notepad into your own order software.

IEXAGON oftware/Bundle Softw Program 💽 SR	Software vare +	Purc	hase Orde New/Update New	r License Individu	al 💌	Number	Language English 💌	Lic.No. Price	net 00 EUR	>	sum net
Delivery and Paymer Location Eur Delivery Em Payment Bar Company Name Adress	il / Download 💌 il / Download 💌 k transfer 🔛 Fritz Fuc Hauptst 12345 E	Euro Posta bank IBAN BIC: I ma hs asse 1 ntenhaus	pean VAT No. [ige cost [transfer : DE83 6117 0024 DEUTDEDB611 (D	DK765979667 D.00 EUR 0074 9127 00 eutsche Bank ES)		→	Purchase Order to HI P.O.: Date: 2016-04-28 We hereby order: 1 FED1+ Individual E 1 FED14 Individual E 1 SR1+ Individual E 1 Update ZAR1+ #0 1 Update ZAR5 #01: sum net: 1.920.00 E Sum total: 1.920.00 E Sum total: 1.920.00 E	English : 695,00 Inglish : 395,00 Inglish : 395,00 123 : 40,00 EUR 23 : 40,00 EUR 23 : 40,00 EUR UR 20 R 20 R 20 R 20 R 20 R 20 R 20 R 20	EUR EUR EUR UR 3		2
Email My Licenses Progra 1 ZAR1 2 ZAR5 3 4 5 6 7 8 8	Fritz.Fuc n Lic.No. 0123 0123 0 123	hs@meir 25.0 10.0	User Fuchs Fuchs		Order Up Upgrade	dates nquiry	IBAN: DE83 6117 00 BIC: DEUTDEDB611 Software released by MeineFirma Fritz Fuchs Hauptstrasse 1 12345 Entenhausen Fritz, Fuchs@meinefir Clear	124 0074 9127 ((Deutsche Bar key code after ma.de)0 k ES) receipt of paym └ Clipboard	> Notepad	

Advantages of order_e.exe versus online order form order_e-htm:

- Includes administration of licenses, generates update order
- Safe coding for credit card data
- Updates of spring package, base package, tolerance package can be ordered for reduced price
- Available languages shown for each program
- Order form can be exported to email, clipboard, notepad

PRICELIST 2016-05-01

PRODUCT	EUR
DI1 Version 1.2 O-Ring Seal Software	190,-
DXF-Manager Version 8.7	383,-
DXFPLOT V 3.2	123,-
FED1 V28.2 Helical Compression Springs	491,-
FED1+ V28.2 Helical Compression Springs incl. spring database, animation, relax., 3D	695
FED2 V19.7 Helical Extension Springs	501
FED2+ V19 7 Helical Extension Springs incl. spring database animation relaxation	675 -
FED3+ V18 5 Helical Torsion Springs incl. prod drawing animation 3D rectang wire	480 -
FED4 Version 7.2 Disk Springs	430 -
FED5 Version 15.1 Conical Compression Springs	741 -
FED6 Version 15.6 Nonlinear Cylindrical Compression Springs	634 -
EED7 Version 12.6 Nonlinear Compression Springs	660
EED? Version 6.2 Tersion Bar	217
FEDO Version 5.9 Spiral Spring	204
FED9 Version 3.0 Spiral Spring	594,-
FED10 Version 3.3 Lear Spring (complex)	500,-
FED 11 Version 3.3 Spring Lock and Busning	210,-
FED12 Version 2.4 Elastomere Compression Spring	220,-
FED13 Version 3.9 Wave Spring Washers	185,-
FED14 Version 1.4 Helical Wave Spring	395,-
FED15 Version 1.3 Leaf Spring (simple)	180,-
GEO1+ V5.7 Cross Section Calculation incl. profile database	294
GEO2 V2.6 Rotation Bodies	194,-
GEO3 V3.3 Hertzian Pressure	205,-
GEO4 V3.9 Cam Software	265,-
HPGL-Manager Version 8.6	383,-
LG1 V6.4 Roll-Contact Bearings	296,-
LG2 V2.1 Hydrodynamic Plain Journal Bearings	460,-
SR1 V21.6 Bolted Joint Design	640,-
SR1+ V21.6 Bolted Joint Design incl. Flange calculation	750,-
TOL1 V11.8 Tolerance Analysis	506,-
TOL1CON V1.5 Conversion Program for TOL1	281,-
TOL2 Version 3.3 Tolerance Analysis	495,-
TOLPASS V4.1 Library for ISO tolerances	107,-
TR1 V3.8 Girder Calculation	757
WL1+ V19.8 Shaft Calculation incl. Roll-contact Bearings	945
WN1 Version 11.6 Cylindrical and Conical Press Fits	485 -
WN2 V 9.5 Involute Splines to DIN 5480	250 -
WN2+ V 9.5 Involute Splines to DIN 5480 and non-standard involute splines	380 -
WN3 V 5.3 Parallel Key Joints to DIN 6885, ANSI B17.1, DIN 6892	245 -
$WN3 \vee 3.3$ Faraner Rey Joints to Diriv 0000, ANSED 17.1, Diriv 0032	276 -
WN4 V 4.4 Involute Splines to KNSI D 92.1	270,-
WNS V 4.4 Involute Splines to ISO 4150 and ANSED 52.2 M	233,-
WN0 V 2.9 Folygon Profiles P3G to DIN 32711	175
WN7 V 2.2 Polygon Promes P4C to Din 32712	175,-
WNO V 2.1 Selfation to DIN 3461	195,-
WN9 V 2.1 Spline Sharts to DIN ISO 14	170,-
WN10 V 3.7 Involute Splines to DIN 5482	260,-
WN11 V 1.3 Woodruff Key Joints	240,-
WNXE V 1.1 Involute Splines - dimensions, graphic, measure	375,-
WNXK V 1.0 Serration Splines - dimensions, graphic, measure	230,-
WST1 V 10.0 Material Database	235,-
ZAR1+ V 25.0 Spur and Helical Gears	1115,-
ZAR2 V7.7 Spiral Bevel Gears to Klingelnberg	792,-
ZAR3 V8.9 Worm Gears	404,-
ZAR4 V3.7 Non-circular Spur Gears	1610,-
ZAR5 V10.0 Planetary Gearings	1355,-
ZAR6 V3.7 Straight/Helical/Spiral Bevel Gears	585,-
ZARXP V2.0 Involute Profiles - dimensions, graphic, measure	275,-
ZAR1W V1.6 Gear Wheel Dimensions, tolerances, measure	450,-
ZM1.V2.3 Chain Gear Design	326,-

PACKAGES	EUR
HEXAGON Mechanical Engineering Package (TOL1, ZAR1+, ZAR2, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WN2+, WN3, WST1, SR1+, FED1+, FED2+, FED3+, FED4, ZARXP, TOLPASS, LG1, DXFPLOT, GEO1+, TOL2, TOL1CON, GEO2, GEO3, ZM1, WN6, WN7, LG2, FED12, FED13, WN8, WN9, WN11, DI1, FED15, WNXE)	8,500
HEXAGON Mechanical Engineering Base Package (ZAR1+, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WST1, SR1+, FED1,+, FED2+, FED3+)	4.900,-
HEXAGON Spur Gear Bundle (ZAR1+ and ZAR5)	1,585
HEXAGON Involute Spline Package (WN2+, WN4, WN5, WN10, WNXE)	1,200
HEXAGON Graphic Package (DXF-Manager, HPGL-Manager, DXFPLOT)	741
HEXAGON Helical Spring Package (FED1+, FED2+, FED3+, FED5, FED6, FED7)	2,550
HEXAGON Tolerance Package (TOL1, TOL1CON, TOL2, TOLPASS)	945
HEXAGON Complete Package (All Programs of Engineering Package, Graphics Package, Tolerance Package, Helical Spring Package, TR1, FED8, FED9, FED10, ZAR4, GEO4, WN4, WN5, FED11,WN10, ZAR1W, FED14, WNXK)	11,500

Quantity Discount for Individual Licenses

Licenses	2	3	4	5	6	7	8	9	>9
Discount %	25%	27.5%	30%	32.5%	35%	37.5%	40%	42.5%	45%

Network Floating License

Licenses	1	2	3	4	5	6	78	911	>11
Discount/Add.cost	-50%	-20%	0%	10%	15%	20%	25%	30%	35%
(Negative Discount means additional cost)									

(Negative Discount means additional cost)

Language Version:

- German and English : all Programs
- French: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9, FED10, FED14, TOL1, TOL2.
- Italiano: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9.
- Swedish: FED1+, FED2+, FED3+, FED5, FED6, FED7.
- Portugues: FED1+
- Spanish: FED1+, FED2+, FED3+

Updates:

Update prices	EUR
Software Update (software + pdf manual)	40,-
Software Update (software 64-bit Win + pdf manual)	50,-

Update Mechanical Engineering Package: 800 EUR, Update Complete Package: 1000 EUR

Maintenance contract for free updates: annual fee: 150 EUR + 40 EUR per program

Upgrades

For upgrades to network licenses or plus versions or software bundles, upgraded licenses are credited 75%.

Hexagon Software Network Licenses

Floating License in the time-sharing manner by integrated license manager Individual licenses may not be installed in a network!

Conditions for delivery and payment

General packaging and postage costs are EUR 60, (EUR 25 inside Europe) Delivery by Email (program packed, manual as pdf files): EUR 0. Conditions of payment: bank transfer in advance with 2% discount, or by credit card (Master, Visa) net.

Key Code

After installation, software has to be released by key code. Key codes will be sent after receipt of payment.

HEXAGON Industriesoftware GmbH